Kinetic Monte Carlo simulation of transport in amorphous silicon passivation layers in silicon heterojunction solar cells

被引:9
作者
Muralidharan, Pradyumna [1 ]
Goodnick, Stephen M. [1 ]
Vasileska, Dragica [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
Silicon heterojunction solar cells; Kinetic Monte Carlo; Defect-assisted transport; Device modeling; DEFECT-POOL MODEL; TEMPERATURE-DEPENDENCE; CONTACT; MOOX;
D O I
10.1007/s10825-019-01379-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon heterojunction solar cell device structures use carrier-selective contacts to maximize collection of photogenerated carriers. The carrier-selective contact structure consists of doped hydrogenated amorphous silicon and intrinsic hydrogenated amorphous silicon [a-Si:H(i)]. In this structure, the a-Si:H(i) layer plays a crucial role as it passivates the heterointerface between the doped hydrogenated amorphous silicon and the crystalline silicon enabling the solar cell to achieve high device efficiencies. However, the a-Si:H(i) layer also creates a potential barrier to photogenerated carriers which obstructs them from getting collected. Previously, experimental studies in the literature have predicted that the photogenerated carriers cross the barrier by defect-assisted transport (hopping). Traditionally, theoretical models that are employed to study the electrical characteristics of silicon heterojunction solar cells do not provide any great insight into the transport of carriers via defects. In this paper, we present an in-house developed kinetic Monte Carlo that simulates the transport of photogenerated holes through the band tail defect states in the a-Si:H(i) layer. This is done primarily by defining transition rates associated with carrier-defect interactions. We conduct simulations to understand the impact of the properties (optical phonon energy, defect density, etc.) of the a-Si:H(i) layer on transport of photogenerated holes. Our simulations indicate that multi-phonon injection and hopping processes assist photogenerated holes to cross the a-Si:H(i) layer, which is in agreement with experimental findings.
引用
收藏
页码:1152 / 1161
页数:10
相关论文
共 50 条
[31]   Silicon heterojunction solar cells toward higher fill factor [J].
Martini, Luca ;
Serenelli, Luca ;
Menchini, Francesca ;
Izzi, Massimo ;
Tucci, Mario .
PROGRESS IN PHOTOVOLTAICS, 2020, 28 (04) :307-320
[32]   Optoelectrical analysis of TCO plus Silicon oxide double layers at the front and rear side of silicon heterojunction solar cells [J].
Cruz, Alexandros ;
Erfurt, Darja ;
Wagner, Philipp ;
Morales-Vilches, Anna B. ;
Ruske, Florian ;
Schlatmann, Rutger ;
Stannowski, Bernd .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 236
[33]   Importance of Nanocrystallites in a-Si:H Passivation Layer in Improving The Performance of Silicon Heterojunction Solar Cells [J].
Zhang, Liping ;
Chen, Renfang ;
Bao, Jian ;
Wu, Zhuopeng ;
Li, Zhenfei ;
Shi, Jianhua ;
Han, Anjun ;
Du, Junlin ;
Meng, Fanying ;
Liu, Zhengxin .
2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, :3152-3155
[34]   A method to slow down the etching of hydrogen plasma pretreatment and improve passivation in silicon heterojunction solar cells [J].
Li, Jianming ;
Liu, Ziyuan ;
Tao, Ke ;
Li, Wei ;
Yan, Baojie ;
Yang, Baohai ;
Bi, Jinlian ;
Xing, Yupeng ;
Yuan, Yujie .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 278
[35]   The role of heterointerfaces and subgap energy states on transport mechanisms in silicon heterojunction solar cells [J].
Procel, Paul ;
Xu, Haiyuan ;
Saez, Aurora ;
Ruiz-Tobon, Carlos ;
Mazzarella, Luana ;
Zhao, Yifeng ;
Han, Can ;
Yang, Guangtao ;
Zeman, Miro ;
Isabella, Olindo .
PROGRESS IN PHOTOVOLTAICS, 2020, 28 (09) :935-945
[36]   Characterization of transparent conductive oxide films and their effect on amorphous/crystalline silicon heterojunction solar cells [J].
Meng, Fanying ;
Shi, Jianhua ;
Shen, Leilei ;
Zhang, Liping ;
Liu, Jinning ;
Liu, Yucheng ;
Yu, Jian ;
Bao, Jian ;
Liu, Zhengxin .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (04)
[37]   Multifunctional Titanium Oxide Layers in Silicon Heterojunction Solar Cells Formed via Selective Anodization [J].
Jakob, Leonie ;
Tutsch, Leonard ;
Hatt, Thibaud ;
Westraadt, Johan ;
Ngongo, Sinoyolo ;
Glatthaar, Markus ;
Bivour, Martin ;
Bartsch, Jonas .
SOLAR RRL, 2023, 7 (19)
[38]   Voc transient in silicon heterojunction solar cells with μc-SiOx:H window layers [J].
Yang, Xueliang ;
Song, Jianmin ;
Yang, Jing ;
Bai, Jingjing ;
Dang, Wei ;
Chen, Jianhui .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (30)
[39]   Surface Modification and Theoretical Investigation by Simulation for Light Trapping in Silicon Heterojunction Solar Cells [J].
Park, Hyeong Gi ;
Shin, Myunghun ;
Kim, Yong-Ki ;
Lee, Jae-Hyun ;
Ju, Minkyu ;
Yi, Junsin .
TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2023, 24 (06) :579-588
[40]   Progress with Defect Engineering in Silicon Heterojunction Solar Cells [J].
Wright, Matthew ;
Stefani, Bruno Vicari ;
Soeriyadi, Anastasia ;
Basnet, Rabin ;
Sun, Chang ;
Weigand, William ;
Yu, Zhengshan ;
Holman, Zachary ;
Macdonald, Daniel ;
Hallam, Brett .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (09)