Kinetic Monte Carlo simulation of transport in amorphous silicon passivation layers in silicon heterojunction solar cells

被引:9
作者
Muralidharan, Pradyumna [1 ]
Goodnick, Stephen M. [1 ]
Vasileska, Dragica [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
Silicon heterojunction solar cells; Kinetic Monte Carlo; Defect-assisted transport; Device modeling; DEFECT-POOL MODEL; TEMPERATURE-DEPENDENCE; CONTACT; MOOX;
D O I
10.1007/s10825-019-01379-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon heterojunction solar cell device structures use carrier-selective contacts to maximize collection of photogenerated carriers. The carrier-selective contact structure consists of doped hydrogenated amorphous silicon and intrinsic hydrogenated amorphous silicon [a-Si:H(i)]. In this structure, the a-Si:H(i) layer plays a crucial role as it passivates the heterointerface between the doped hydrogenated amorphous silicon and the crystalline silicon enabling the solar cell to achieve high device efficiencies. However, the a-Si:H(i) layer also creates a potential barrier to photogenerated carriers which obstructs them from getting collected. Previously, experimental studies in the literature have predicted that the photogenerated carriers cross the barrier by defect-assisted transport (hopping). Traditionally, theoretical models that are employed to study the electrical characteristics of silicon heterojunction solar cells do not provide any great insight into the transport of carriers via defects. In this paper, we present an in-house developed kinetic Monte Carlo that simulates the transport of photogenerated holes through the band tail defect states in the a-Si:H(i) layer. This is done primarily by defining transition rates associated with carrier-defect interactions. We conduct simulations to understand the impact of the properties (optical phonon energy, defect density, etc.) of the a-Si:H(i) layer on transport of photogenerated holes. Our simulations indicate that multi-phonon injection and hopping processes assist photogenerated holes to cross the a-Si:H(i) layer, which is in agreement with experimental findings.
引用
收藏
页码:1152 / 1161
页数:10
相关论文
共 50 条
[21]   Prolonged Annealing Improves Hole Transport of Silicon Heterojunction Solar Cells [J].
Huang, Shenglei ;
Liu, Wenzhu ;
Li, Xiaodong ;
Li, Zhenfei ;
Wu, Zhuopeng ;
Huang, Wei ;
Yang, Yuhao ;
Jiang, Kai ;
Shi, Jianhua ;
Zhang, Liping ;
Meng, Fanying ;
Liu, Zhengxin .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (12)
[22]   A methodology for the kinetic Monte Carlo simulation of alumina atomic layer deposition onto silicon [J].
Mazaleyrat, G ;
Estève, A ;
Jeloaica, L ;
Djafari-Rouhani, M .
COMPUTATIONAL MATERIALS SCIENCE, 2005, 33 (1-3) :74-82
[23]   Growth Difference of amorphous silicon between plasma enhanced and catalytic CVD based on silicon heterojunction solar cells [J].
Zhang, Liping ;
Chen, Renfang ;
Wu, Zhuopeng ;
Sun, Chenguang ;
Meng, Fanying ;
Liu, Zhengxin .
2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, :1241-1244
[24]   Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer [J].
Garcia-Hernansanz, R. ;
Garcia-Hemme, E. ;
Montero, D. ;
Olea, J. ;
del Prado, A. ;
Martil, I. ;
Voz, C. ;
Gerling, L. G. ;
Puigdollers, J. ;
Alcubilla, R. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 :61-65
[25]   Properties and Imaging of Thick Doped Amorphous Silicon in Direct Contact with Aluminum For Use in Silicon Heterojunction Solar Cells [J].
Bryan, Jonathan L. ;
Gangopadhyay, Abhinandan ;
Yu, Zhengshan J. ;
Leilaeioun, Ashling ;
Carpenter, Joe V., III ;
Shi, Jianwei ;
Weigand, William ;
Fisher, Kathryn C. ;
Smith, David J. ;
Holman, Zachary C. .
2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, :1974-1978
[26]   Monte Carlo simulation of the effect of silicon monoxide on silicon-nanocluster formation [J].
E. A. Mikhantiev ;
I. G. Neizvestny ;
S. V. Usenkov ;
N. L. Shwartz .
Semiconductors, 2014, 48 :891-898
[27]   Ozone-based surface conditioning focused on an improved passivation for Silicon Heterojunction solar cells [J].
Moldovan, Anamaria ;
Dannenberg, Tobias ;
Temmler, Jan ;
Kroely, Laurent ;
Zimmer, Martin ;
Rentsch, Jochen .
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2016), 2016, 92 :374-380
[28]   Impedance spectroscopy of amorphous/crystalline silicon heterojunction solar cells under dark and illumination [J].
Panigrahi, Jagannath ;
Pandey, Ashutosh ;
Bhattacharya, Shrestha ;
Pal, Alok ;
Mandal, Sourav ;
Komarala, Vamsi Krishna .
SOLAR ENERGY, 2023, 259 :165-173
[29]   Multiscale Modeling of Silicon Heterojunction Solar Cells [J].
Muralidharan, Pradyumna ;
Bowden, Stuart ;
Goodnick, Stephen M. ;
Vasileska, Dragica .
2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, :3547-3551
[30]   On the limiting efficiency for silicon heterojunction solar cells [J].
Long, Wei ;
Yin, Shi ;
Peng, Fuguo ;
Yang, Miao ;
Fang, Liang ;
Ru, Xiaoning ;
Qu, Minghao ;
Lin, Hongfeng ;
Xu, Xixiang .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 231