Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes

被引:457
作者
Liu, Hao [1 ]
Wolf, Mark [2 ]
Karki, Khim [3 ]
Yu, Young-Sang [2 ,4 ]
Stach, Eric A. [3 ]
Cabana, Jordi [2 ]
Chapman, Karena W. [1 ]
Chupas, Peter J. [5 ]
机构
[1] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA
[2] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Argonne Natl Lab, Adv Photon Source, Photon Sci Directorate, 9700 South Cass Ave, Argonne, IL 60439 USA
关键词
Capacity fading; operando X-ray diffraction; batteries; intergranular cracking; LITHIUM-ION BATTERIES; LINI0.8CO0.15AL0.05O2; PARTICLES; DEGRADATION; PERFORMANCE; MICROSCOPY; DISCHARGE; BEHAVIOR; FATIGUE; CHARGE;
D O I
10.1021/acs.nanolett.7b00379
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capacity fading has limited commercial layered Li-ion battery electrodes to <70% of their theoretical capacity. Higher capacities can be achieved initially by charging to higher voltages, however, these gains are eroded by a faster fade in capacity. Increasing lifetimes and reversible capacity are contingent on identifying the origin of this capacity fade to inform electrode design and synthesis. We used operando X-ray diffraction to observe how the lithiation-delithiation reactions within a LiNi0.8Co0.15Al0.05O2 (NCA) electrode change after capacity fade following months of slow chargedischarge. The changes in the reactions that underpin energy storage after long-term cycling directly correlate to the capacity loss; heterogeneous reaction kinetics observed during extended cycles quantitatively account for the capacity loss. This reaction heterogeneity is ultimately attributed to intergranular fracturing that degrades the connectivity of subsurface grains within the polycrystalline NCA aggregate.
引用
收藏
页码:3452 / 3457
页数:6
相关论文
共 32 条
[1]   Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells [J].
Abraham, DP ;
Twesten, RD ;
Balasubramanian, M ;
Kropf, J ;
Fischer, D ;
McBreen, J ;
Petrov, I ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1450-A1456
[2]   Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells [J].
Abraham, DP ;
Twesten, RD ;
Balasubramanian, M ;
Petrov, I ;
McBreen, J ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (08) :620-625
[3]   The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements [J].
Borkiewicz, Olaf J. ;
Shyam, Badri ;
Wiaderek, Kamila M. ;
Kurtz, Charles ;
Chupas, Peter J. ;
Chapman, Karena W. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2012, 45 :1261-1269
[4]   Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries [J].
Ebner, Martin ;
Marone, Federica ;
Stampanoni, Marco ;
Wood, Vanessa .
SCIENCE, 2013, 342 (6159) :716-720
[5]   Persistent State-of-Charge Heterogeneity in Relaxed, Partially Charged Li1-xNi1/3Co1/3Mn1/3O2 Secondary Particles [J].
Gent, William E. ;
Li, Yiyang ;
Ahn, Sungjin ;
Lim, Jongwoo ;
Liu, Yijin ;
Wise, Anna M. ;
Gopal, Chirranjeevi Balaji ;
Mueller, David N. ;
Davis, Ryan ;
Weker, Johanna Nelson ;
Park, Jin-Hwan ;
Doo, Seok-Kwang ;
Chueh, William C. .
ADVANCED MATERIALS, 2016, 28 (31) :6631-+
[6]   Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3-4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes [J].
Gilbert, James A. ;
Bareno, Javier ;
Spila, Timothy ;
Trask, Stephen E. ;
Miller, Dean J. ;
Polzin, Bryant J. ;
Jansen, Andrew N. ;
Abraham, Daniel P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A6054-A6065
[7]   In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode [J].
Huang, Jian Yu ;
Zhong, Li ;
Wang, Chong Min ;
Sullivan, John P. ;
Xu, Wu ;
Zhang, Li Qiang ;
Mao, Scott X. ;
Hudak, Nicholas S. ;
Liu, Xiao Hua ;
Subramanian, Arunkumar ;
Fan, Hongyou ;
Qi, Liang ;
Kushima, Akihiro ;
Li, Ju .
SCIENCE, 2010, 330 (6010) :1515-1520
[8]   Performance of LiNiCoO2 materials for advanced lithium-ion batteries [J].
Itou, Y ;
Ukyo, Y .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :39-44
[9]   Tuning the Activity of Oxygen in LiNi0.8Co0.15Al0.05O2 Battery Electrodes [J].
Karki, Khim ;
Huang, Yiqing ;
Hwang, Sooyeon ;
Gamalski, Andrew D. ;
Whittingham, M. Stanley ;
Zhou, Guangwen ;
Stach, Eric A. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (41) :27762-27771
[10]   A New Coating Method for Alleviating Surface Degradation of LiNi0.6Co0.2Mn0.2O2 Cathode Material: Nanoscale Surface Treatment of Primary Particles [J].
Kim, Hyejung ;
Kim, Min Gyu ;
Jeong, Hu Young ;
Nam, Haisol ;
Cho, Jaephil .
NANO LETTERS, 2015, 15 (03) :2111-2119