Ricci solitons on singly warped product manifolds and applications

被引:16
作者
De, Uday Chand [1 ]
Mantica, Carlo Alberto [2 ]
Shenawy, Sameh [3 ]
Unal, Bulent [4 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygaunge Circular Rd, Kolkata 700019, W Bengal, India
[2] IIS Lagrange, Via L Modignani 65, I-20161 Milan, Italy
[3] Modern Acad Engn & Technol, Basic Sci Dept, Maadi, Egypt
[4] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey
关键词
Warped product manifolds; Ricci solitons; Concurrent vector fields; ROBERTSON-WALKER SPACETIMES; VECTOR-FIELDS; CLASSIFICATION; GEOMETRY;
D O I
10.1016/j.geomphys.2021.104257
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to study implications of a Ricci soliton warped product manifold to its base and fiber manifolds. First, it is proved that if a warped product manifold is Ricci soliton then its factors are Ricci soliton. Then we study Ricci soliton on warped product manifolds admitting either a conformal vector field or a concurrent vector field. Finally, we study Ricci soliton on some warped product space-times. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 28 条
[1]   ENERGY CONDITIONS IN STANDARD STATIC SPACETIMES [J].
ALLISON, D .
GENERAL RELATIVITY AND GRAVITATION, 1988, 20 (02) :115-122
[2]  
ALLISON D, 1988, GEOMETRIAE DEDICATA, V26, P85
[3]   Geodesic structure of standard static space-times [J].
Allison, DE ;
Ünal, B .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 46 (02) :193-200
[4]  
[Anonymous], 2008, EINSTEIN MANIFOLDS
[5]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[6]  
Brendle S, 2014, J DIFFER GEOM, V97, P191
[7]   Locally Conformally Flat Lorentzian Gradient Ricci Solitons [J].
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) :1196-1212
[8]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[9]  
Chen BY, 2017, KRAGUJEV J MATH, V41, P239, DOI 10.5937/KgJMath1702239C
[10]   SOME RESULTS ON CONCIRCULAR VECTOR FIELDS AND THEIR APPLICATIONS TO RICCI SOLITONS [J].
Chen, Bang-Yen .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (05) :1535-1547