Linear and nonlinear buckling analysis for the material design optimization of wind turbine blades

被引:3
作者
Theotokoglou, Efstathios E. [1 ]
Balokas, Georgios [2 ]
Savvaki, Evgenia K. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Zografos, Greece
[2] Tech Univ Hamburg, Dept Struct Optimizat Leightweight Design, Hamburg, Germany
关键词
Composite materials; Finite element analysis; SIMULATION;
D O I
10.1108/IJSI-02-2018-0011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose The purpose of this paper is to investigate the buckling behavior of the load-carrying support structure of a wind turbine blade. Design/methodology/approach Experimental experience has shown that local buckling is a major failure mode that dominantly influences the total collapse of the blade. Findings The results from parametric analyses offer a clear perspective about the buckling capacity but also about the post-buckling behavior and strength of the models. Research limitations/implications - This makes possible to compare the response of the different fiber-reinforced polymers used in the computational model. Originality/value Furthermore, this investigation leads to useful conclusions for the material design optimization of the load-carrying box girder, as significant advantages derive not only from the combination of different fiber-reinforced polymers in hybrid material structures, but also from Kevlar-fiber blades.
引用
收藏
页码:749 / 765
页数:17
相关论文
共 18 条
[1]  
[Anonymous], 2009, 50 AIAA STRUCT STRUC
[2]  
ANSYS Engineering Analysis System, 2007, USERS MANUAL
[3]  
Burton T., 1991, WIND ENERGY HDB
[4]   Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading [J].
Chen, Xiao ;
Zhao, Wei ;
Zhao, Xiao Lu ;
Xu, Jian Zhong .
ENERGIES, 2014, 7 (04) :2274-2297
[5]   Structural design and analysis of a 10MW wind turbine blade [J].
Cox, Kevin ;
Echtermeyer, Andreas .
SELECTED PAPERS FROM DEEP SEA OFFSHORE WIND R&D CONFERENCE, 2012, 24 :194-201
[6]   Comparison of Theoretical and Numerical Buckling Loads for Wind Turbine Blade Panels [J].
Gaudern, Nicholas ;
Symons, Digby .
WIND ENGINEERING, 2010, 34 (02) :193-206
[7]  
Griffin D.A., 2001, WINDPACT TURBINE DES
[8]   Structural-Response Analysis, Fatigue-Life Prediction, and Material Selection for 1 MW Horizontal-Axis Wind-Turbine Blades [J].
Grujicic, M. ;
Arakere, G. ;
Subramanian, E. ;
Sellappan, V. ;
Vallejo, A. ;
Ozen, M. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2010, 19 (06) :790-801
[9]   The effect of delaminations on local buckling in wind turbine blades [J].
Haselbach, P. U. ;
Bitsche, R. D. ;
Branner, K. .
RENEWABLE ENERGY, 2016, 85 :295-305
[10]   Structural testing and numerical simulation of a 34 m composite wind turbine blade [J].
Jensen, F. M. ;
Falzon, B. G. ;
Ankersen, J. ;
Stang, H. .
COMPOSITE STRUCTURES, 2006, 76 (1-2) :52-61