Black Carbon and Secondary Brown Carbon, the Dominant Light Absorption and Direct Radiative Forcing Contributors of the Atmospheric Aerosols Over the Tibetan Plateau

被引:25
作者
Zhu, Chong-Shu [1 ,2 ]
Qu, Yao [1 ,2 ]
Huang, Hong [3 ]
Chen, Ji [4 ]
Dai, Wen-Ting [1 ,2 ]
Huang, Ru-Jin [1 ,2 ]
Cao, Jun-Ji [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Quaternary Sci & Global Change, SKLLQG, Xian, Peoples R China
[2] Chinese Acad Sci, Inst Earth Environm, KLACP, Xian, Peoples R China
[3] NanChang Univ, Sch Resource Environm & Chem Engn, Nanchang, Jiangxi, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Beiluhe Stn Frozen Soil Engn & Environm, Lanzhou, Peoples R China
[5] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
BC; BrCpri; BrCsec; light absorption; the Tibetan Plateau; ORGANIC-CARBON; MATTER;
D O I
10.1029/2021GL092524
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Black carbon (BC), primary brown carbon (BrCpri), and secondary brown carbon (BrCsec) are important light-absorbing aerosol. BC and BrC from the surrounding area can reach the Tibetan Plateau (TP) and influence climate change and glacial melting. Here, we presented a study of the light absorption, radiative forcing, and potential source areas of BC and BrC over the northeastern, central, and southwestern TP. The higher light absorption was observed in the northeastern and southwestern sites compared to the central TP site. The major carbonaceous light-absorbing was attributed to BC with the percentages of 65%, 56%, and 82% in Ngari, Qinghai Lake, and Beiluhe, respectively. The heighten contribution of BrCsec to total light absorption indicated the importance of BrCsec in the TP, especially in the northeastern and southwestern areas. The BrCsec radiative forcings relative to BC were much higher than those of BrCpri. The potential BC and BrCpri source distributions were obtained.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Black carbon or brown carbon?: The nature of light-absorbing carbonaceous aerosols [J].
Andreae, M. O. ;
Gelencser, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3131-3148
[2]   Solar absorption by elemental and brown carbon determined from spectral observations [J].
Bahadur, Ranjit ;
Praveen, Puppala S. ;
Xu, Yangyang ;
Ramanathan, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (43) :17366-17371
[3]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[4]   Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids [J].
Cong, Zhiyuan ;
Kawamura, Kimitaka ;
Kang, Shichang ;
Fu, Pingqing .
SCIENTIFIC REPORTS, 2015, 5
[5]   Historical Trends of Atmospheric Black Carbon on Tibetan Plateau As Reconstructed from a 150-Year Lake Sediment Record [J].
Cong, Zhiyuan ;
Kang, Shichang ;
Gao, Shaopeng ;
Zhang, Yulan ;
Li, Qing ;
Kawamura, Kimitaka .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (06) :2579-2586
[6]  
Draxler R.R., HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model
[7]   The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation [J].
Drinovec, L. ;
Mocnik, G. ;
Zotter, P. ;
Prevot, A. S. H. ;
Ruckstuhl, C. ;
Coz, E. ;
Rupakheti, M. ;
Sciare, J. ;
Mueller, T. ;
Wiedensohler, A. ;
Hansen, A. D. A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (05) :1965-1979
[8]   Brown carbon: a significant atmospheric absorber of solar radiation? [J].
Feng, Y. ;
Ramanathan, V. ;
Kotamarthi, V. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (17) :8607-8621
[9]   Springtime warming and reduced snow cover from carbonaceous particles [J].
Flanner, M. G. ;
Zender, C. S. ;
Hess, P. G. ;
Mahowald, N. M. ;
Painter, T. H. ;
Ramanathan, V. ;
Rasch, P. J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (07) :2481-2497
[10]   Comparison of hybrid receptor models to locate PCB sources in Chicago [J].
Hsu, YK ;
Holsen, TM ;
Hopke, PK .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (04) :545-562