Convergence and extensions of variational problems with non-coercive functionals

被引:0
|
作者
Ioffe, AD [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
来源
CONTROL AND CYBERNETICS | 2002年 / 31卷 / 03期
关键词
coercivity; relaxation; Gamma-convergence; duality; vector measures;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper is a transcript of the lecture given at the European Symposium on Well-Posedness in Optimization in Warsaw. It contains a complete theory of variational problems with integrands not depending on x, including existence and relaxation theorems, a complete description of solutions and the connection between variational convergences of functionals and convergence of value functions and solutions of associated variational problems with the main emphasis on functionals that lack coercivity.
引用
收藏
页码:507 / 519
页数:13
相关论文
共 50 条
  • [1] On the variational convergence of non-coercive quadratic integral functionals and semicontinuity problems
    F. Acanfora
    G. Cardone
    S. Mortola
    Nonlinear Differential Equations and Applications NoDEA, 2003, 10 : 347 - 373
  • [2] On the variational convergence of non-coercive quadratic integral functionals and semicontinuity problems
    Acanfora, F
    Cardone, G
    Mortola, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2003, 10 (03): : 347 - 373
  • [3] STOCHASTIC HOMOGENIZATION OF NON-COERCIVE FUNCTIONALS
    FACCHINETTI, G
    GAVIOLI, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 144 : 315 - 327
  • [4] On limits of variational problems. The case of a non-coercive functional
    Freddi, L
    Ioffe, AD
    JOURNAL OF CONVEX ANALYSIS, 2002, 9 (02) : 439 - 462
  • [6] NON-COERCIVE ELLIPTICAL VARIATIONAL INEQUALITIES
    DEUEL, J
    HESS, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 279 (18): : 719 - 722
  • [7] NON-COERCIVE VARIATIONAL-INEQUALITIES
    BAIOCCHI, C
    GASTALDI, F
    TOMARELLI, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (14): : 647 - 650
  • [8] On the minimum problem for a class of non-coercive functionals
    Cellina, A
    Treu, G
    Zagatti, S
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) : 225 - 262
  • [9] Regularization of non-coercive quasi variational inequalities
    Giannessi, F
    Khan, AA
    CONTROL AND CYBERNETICS, 2000, 29 (01): : 91 - 110
  • [10] Existence results for non-coercive problems
    Diblik, Josef
    Galewski, Marek
    Smarda, Zdenk
    ADVANCES IN NONLINEAR ANALYSIS, 2025, 14 (01)