A class of infinite dimensional simple Lie algebras

被引:19
作者
Zhao, KM [1 ]
机构
[1] Chinese Acad Sci, Math Inst, Acad Math & Syst Sci, Beijing 100080, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2000年 / 62卷
基金
中国国家自然科学基金;
关键词
D O I
10.1112/S0024610700008954
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian group, F be a field of characteristic 0, and alpha, beta be linearly independent additive maps from A to F, and let delta epsilon ker(alpha)\{0}. Then there is a Lie algebra L = L(A, alpha, beta, delta) = circle plus(x epsilon A) Fe-x under the product [e(x), e(y)] = alpha(x - y) e(x+y)+(alpha boolean AND beta) (x, y) e(x+y-delta). If, further, beta(delta) = 1, and beta(A) = Z, there is a subalgebra L+ - L(A(+), alpha,beta,delta) = circle plus(x epsilon A) + Fe-x, where A(+) = {x epsilon A / beta(x) greater than or equal to 0} The necessary and sufficient conditions are given for L' = [L, L] and L+ to be simple, and all semi-simple elements in L' and Lf are determined. It is shown that L' and L+ cannot be isomorphic to any other known Lie algebras and L' is not isomorphic to any L+, and all isomorphisms between two L' and all isomorphisms between two L+ are explicitly described.
引用
收藏
页码:71 / 84
页数:14
相关论文
共 18 条
[1]   Lie algebras graded by finite root systems and intersection matrix algebras [J].
Benkart, G ;
Zelmanov, E .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :1-45
[2]  
Block R., 1958, Proc. Am. Math. Soc., V9, P613
[3]   GENERALIZED KAC-MOODY ALGEBRAS [J].
BORCHERDS, R .
JOURNAL OF ALGEBRA, 1988, 115 (02) :501-512
[4]  
DJOKOVIC DZ, 1996, ALGEBRA C, V3, P245
[5]  
DJOKOVIC DZ, 1997, J ALGEBRA, V192, P74
[6]   Generalized Cartan type S Lie algebras in characteristic zero [J].
Dokovic, DZ ;
Zhao, KM .
JOURNAL OF ALGEBRA, 1997, 193 (01) :144-179
[7]  
Dokovic DZ, 1998, T AM MATH SOC, V350, P643
[8]  
Kac V.G, 1990, INFINITE DIMENSIONAL, Vthird, DOI DOI 10.1017/CBO9780511626234
[9]   Infinite-dimensional Lie algebras of generalized Block type [J].
Osborn, JM ;
Zhao, KM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (06) :1641-1650
[10]   Generalized Poisson brackets and Lie algebras of type H in characteristic 0 [J].
Osborn, JM ;
Zhao, KM .
MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (01) :107-143