Existence and uniqueness of time periodic solutions for quantum versions of three-dimensional Schrodinger equations

被引:1
作者
Guo, Zhao [1 ]
机构
[1] Jiujiang Univ, Coll Architectural Engn & Planning, Jiujiang 332005, Peoples R China
关键词
Green-Schrodinger estimates; Runge-Kutta-Matsaev type theorem; Phragmen-Lindelof method; Periodic solutions; BOSE-GAS; REGULARITY CRITERION; INTEGRABLE SYSTEMS; ONE-DIMENSION; THERMODYNAMICS; ORTHOGONALITY; MODEL;
D O I
10.1007/s13324-022-00710-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of time periodic solutions for the quantum version of the nonlinear Schrodinger equation. The uniqueness can also be proved by applying the Runge-Kutta-Matsaev's theory Bai (J. Math. Anal. Appl. 444(1):721-736, 2016) and Phragmen-Lindelof method Li and Li (Acta Math. Sci. Ser. A. 40(5):1248-1258, 2020). In particular, the steady equation and the quantum effects are taken into account which play an exceptionally important role in time decay estimates, especially in the the case when the equation is periodic with respect to the Schrodinger norm.
引用
收藏
页数:39
相关论文
共 62 条
[11]  
Chen N., 2012, FAR E J APPL MATH, V73, P9
[12]   Binary quantum collision operators conserving mass momentum and energy [J].
Degond, P ;
Ringhofer, C .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (09) :785-790
[13]   ORTHOGONALITY AND COMPLETENESS OF THE BETHE-ANSATZ EIGENSTATES OF THE NONLINEAR SCHROEDINGER MODEL [J].
DORLAS, TC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (02) :347-376
[14]   Periodic integrable systems with delta-potentials [J].
Emsiz, E ;
Opdam, EM ;
Stokman, JV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (01) :191-225
[15]  
Emsiz E., 2006, THESIS U AMSTERDAM
[16]   Regularity of Weak Solutions for the Navier-Stokes Equations Via Energy Criteria [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
ADVANCES IN MATHEMATICAL FLUID MECHANICS: DEDICATED TO GIOVANNI PAOLO GALDI ON THE OCCASION OF HIS 60TH BIRTHDAY, INTERNATIONAL CONFERENCE ON MATHEMATICAL FLUID MECHANICS, 2007, 2010, :215-+
[17]   PROBING BELL'S INEQUALITY WITH CLASSICAL SYSTEMS [J].
Ferry, D. K. .
FLUCTUATION AND NOISE LETTERS, 2010, 9 (04) :395-402
[18]   Improved regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component [J].
Gala, Sadek ;
Ragusa, Maria Alessandra .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (03)
[19]   A new regularity criterion of weak solutions to the 3D micropolar fluid flows in terms of the pressure [J].
Gala, Sadek ;
Ragusa, Maria Alessandra ;
Thera, Michel .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (02) :331-337
[20]   A new regularity criterion for the 3D incompressible MHD equations via partial derivatives [J].
Gala, Sadek ;
Ragusa, Maria Alessandra .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (02)