Existence and uniqueness of time periodic solutions for quantum versions of three-dimensional Schrodinger equations

被引:1
作者
Guo, Zhao [1 ]
机构
[1] Jiujiang Univ, Coll Architectural Engn & Planning, Jiujiang 332005, Peoples R China
关键词
Green-Schrodinger estimates; Runge-Kutta-Matsaev type theorem; Phragmen-Lindelof method; Periodic solutions; BOSE-GAS; REGULARITY CRITERION; INTEGRABLE SYSTEMS; ONE-DIMENSION; THERMODYNAMICS; ORTHOGONALITY; MODEL;
D O I
10.1007/s13324-022-00710-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of time periodic solutions for the quantum version of the nonlinear Schrodinger equation. The uniqueness can also be proved by applying the Runge-Kutta-Matsaev's theory Bai (J. Math. Anal. Appl. 444(1):721-736, 2016) and Phragmen-Lindelof method Li and Li (Acta Math. Sci. Ser. A. 40(5):1248-1258, 2020). In particular, the steady equation and the quantum effects are taken into account which play an exceptionally important role in time decay estimates, especially in the the case when the equation is periodic with respect to the Schrodinger norm.
引用
收藏
页数:39
相关论文
共 62 条
[1]   Optical solitons and other solutions to Kaup-Newell equation with Jacobi elliptic function expansion method [J].
Ahmed, Hamdy M. ;
Rabie, Wafaa B. ;
Ragusa, Maria Alessandra .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
[2]   A regularity criterion for local strong solutions to the 3D Stokes-MHD equations [J].
Alghamdi, Ahmad Mohammad ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
ANNALES POLONICI MATHEMATICI, 2020, 124 (03) :247-255
[3]   THE ANISOTROPIC INTEGRABILITY LOGARITHMIC REGULARITY CRITERION FOR THE 3D MHD EQUATIONS [J].
Alghamdi, Ahmad Mohammad ;
Gala, Sadek ;
Qian, Chenyin ;
Ragusa, Maria Alessandra .
ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01) :183-193
[4]   On the Blow-Up Criterion for Incompressible Stokes-MHD Equations [J].
Alghamdi, Ahmad Mohammad ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
RESULTS IN MATHEMATICS, 2018, 73 (03)
[5]   EXTENDED THERMODYNAMICS OF THE BLOTEKJAER HYDRODYNAMICAL MODEL FOR SEMICONDUCTORS [J].
ANILE, AM ;
PENNISI, S .
CONTINUUM MECHANICS AND THERMODYNAMICS, 1992, 4 (03) :187-197
[6]   Multi-symplectic Runge-Kutta-Nystrom methods for nonsmooth nonlinear Schrodinger equations [J].
Bai, Jiejing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (01) :721-736
[7]  
Baxter Rodney J, 2007, Exactly solved models in statistical mechanics
[8]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[9]   COMMENTS ON A LETTER CONCERNING THE CASUAL INTERPRETATION OF THE QUANTUM THEORY [J].
BOHM, D .
PHYSICAL REVIEW, 1953, 89 (01) :319-320
[10]   HIGH-ORDER NUMERICAL METHOD FOR TWO-DIMENSIONAL RIESZ SPACE FRACTIONAL ADVECTION-DISPERSION EQUATION [J].
Borhanifar, Abdollah ;
Ragusa, Maria Alessandra ;
Valizadeh, Sohrab .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (10) :5495-5508