Parameter Study and Optimization of a Color-based Object Classification System

被引:2
|
作者
Hong, Vinh [1 ]
Paulus, Dietrich [1 ]
机构
[1] Univ Koblenz Landau, Inst Computat Visualist, Koblenz, Germany
关键词
color object recognition; color constancy; color histogram matching; optimization; parameter study;
D O I
10.1109/SoCPaR.2009.19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Typical computer vision systems usually include a set of components such as a preprocessor, a feature extractor, and a classifier that together represent an image processing pipeline. For each component there are different operators available. Each operator has a different number of parameters with individual parameter domains. The challenge in developing a computer vision system is the optimal choice of the available operators and their parameters to construct the appropriate pipeline for the problem at hand. The task of finding the optimal combination and setting depends strongly on the definition of the term optimal. Optimality can reach from minimal computational time to maximal recognition rate of a system. Using the example of the color-based object classification system, this contribution presents a comprehensive approach for finding an optimal system by defining the required image processing pipeline, defining the optimization problem for the classification and improving the optimization by taking parameter studies into consideration. This unique approach produces a color-based classification system with an illuminant independent structure.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [31] A color-based approach for automated segmentation in tumor tissue classification
    Wang, Yi-Ying
    Chang, Shao-Chien
    Wu, Li-Wha
    Tsai, Sen-Tien
    Sun, Yung-Nien
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 6577 - +
  • [32] Color-based underwater object recognition using water light attenuation
    Bazeille, Stephane
    Quidu, Isabelle
    Jaulin, Luc
    INTELLIGENT SERVICE ROBOTICS, 2012, 5 (02) : 109 - 118
  • [33] A color-based particle filter for multiple object tracking in an outdoor environment
    Sugandi, Budi
    Kim, Hyoungseop
    Tan, Joo Koi
    Ishikawa, Seiji
    ARTIFICIAL LIFE AND ROBOTICS, 2010, 15 (01) : 41 - 47
  • [34] Robust skin color-based moving object detection for video surveillance
    Kaliraj, Kalirajan
    Manimaran, Sudha
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (04)
  • [35] Color-based underwater object recognition using water light attenuation
    Stéphane Bazeille
    Isabelle Quidu
    Luc Jaulin
    Intelligent Service Robotics, 2012, 5 : 109 - 118
  • [36] Dermoscopy of cutaneous melanoma metastases: A color-based pattern classification
    Antonio Aviles-Izquierdo, Jose
    Ciudad-Blanco, Cristina
    Sanchez-Herrero, Alejandro
    Mateos-Mayo, Ana
    Maria Nieto-Benito, Lula
    Rodriguez-Lomba, Enrique
    JOURNAL OF DERMATOLOGY, 2019, 46 (07): : 564 - 569
  • [37] Spectro-spatial gradients for color-based object recognition and indexing
    Berwick, D
    Lee, SW
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 1999, 1689 : 1 - 8
  • [38] Color-based object segmentation method using artificial neural network
    Hassanat, Ahmad B. A.
    Alkasassbeh, Mouhammd
    Al-awadi, Mouhammd
    Alhasanat, Esra'a A. A.
    SIMULATION MODELLING PRACTICE AND THEORY, 2016, 64 : 3 - 17
  • [39] Color-based pseudo object model for image retrieval with relevance feedback
    Chua, TS
    Chu, CX
    ADVANCED MULTIMEDIA CONTENT PROCESSING, 1999, 1554 : 145 - 160
  • [40] Color-based retrieval
    Sebe, N
    Lew, MS
    PATTERN RECOGNITION LETTERS, 2001, 22 (02) : 223 - 230