Some remarks on the inhomogeneous biharmonic NLS equation

被引:10
作者
Guzman, Carlos M. [1 ]
Pastor, Ademir [2 ]
机构
[1] Fluminense Fed Univ, Dept Math, Niteroi, Brazil
[2] Imecc Unicamp, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Inhomogeneous biharmonic nonlinear; Schrodinger equation; Global well-posedness; Critical nonlinearity; Stability theory; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATIONS; 4TH-ORDER; SCATTERING;
D O I
10.1016/j.nonrwa.2022.103643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inhomogeneous biharmonic nonlinear Schrodinger equation iu(t) + Delta(2)u + lambda vertical bar x vertical bar(-b)|u|(alpha)u = 0, where lambda = +/- 1 and alpha, b > 0. In the subctritical case, we improve the global wellposedness result obtained in Guzman and Pastor (2020) for dimensions N = 5,6,7 in the Sobolev space H-2(R-N). The fundamental tools to establish our results are the standard Strichartz estimates related to the linear problem and the Hardy-Littlewood inequality. Results concerning the energy-critical case, that is, alpha = 8-2b/N-4 are also reported. More precisely, we show well-posedness and a stability result with initial data in the critical space H-2. (C) 2022 Published by Elsevier Ltd.
引用
收藏
页数:17
相关论文
共 17 条
[1]   FINITE TIME BLOWUP FOR THE FOURTH-ORDER NLS [J].
Cho, Yonggeun ;
Ozawa, Tohru ;
Wang, Chengbo .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) :615-640
[2]  
Farah L. G., 2020, ARXIV PREPRINT ARXIV
[3]   Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrodinger equation [J].
Farah, Luiz Gustavo ;
Guzman, Carlos M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (08) :4175-4231
[4]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462
[5]   Scattering for the focusing L2-supercritical and (H) over dot2-subcritical biharmonic NLS equations [J].
Guo, Qing .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (02) :185-207
[6]   On the inhomogeneous biharmonic nonlinear Schrodinger equation: Local, global and stability results [J].
Guzman, Carlos M. ;
Pastor, Ademir .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 56
[7]   On well posedness for the inhomogeneous nonlinear Schrodinger equation [J].
Guzman, Carlos M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 :249-286
[8]   Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrodinger equation in the radial case [J].
Kenig, Carlos E. ;
Merle, Frank .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :645-675
[9]  
Liu X., 2021, ARXIV PREPRINT ARXIV
[10]   Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrodinger equations of fourth order in dimensions d ≥ 9 [J].
Miao, Changxing ;
Xu, Guixiang ;
Zhao, Lifeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (12) :3381-3402