Novel gel polymer electrolyte for high-performance lithium-sulfur batteries

被引:386
作者
Liu, Ming [1 ,2 ]
Zhou, Dong [1 ,2 ]
He, Yan-Bing [1 ]
Fu, Yongzhu [3 ]
Qin, Xianying [1 ,5 ]
Miao, Cui [1 ]
Du, Hongda [1 ]
Li, Baohua [1 ]
Yang, Quan-Hong [1 ]
Lin, Zhiqun [4 ]
Zhao, T. S. [5 ]
Kang, Feiyu [1 ,2 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Engn Lab Next Generat Power & Energy Storage Batt, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Dept Mat Sci & Engn, Adv Mat Lab, Beijing 100084, Peoples R China
[3] Indiana Univ Purdue Univ, Dept Mech Engn, Indianapolis, IN 46202 USA
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[5] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-sulfur battery; Gel polymer electrolyte; Pentaerythritol tetraacrylate; In-situ synthesis; Polysulfides immobilization; ELECTROCHEMICAL PERFORMANCE; CATHODE MATERIAL; ENERGY-STORAGE; LI; COMPOSITE; SHUTTLE; PAPER; ACID;
D O I
10.1016/j.nanoen.2016.02.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ability to suppress the dissolution of lithium polysulfides in liquid electrolyte (LE) is emerging and scientifically challenging, representing an important endeavor toward successful commercialization of lithium-sulfur (Li-S) batteries. In this context, a common and effective strategy to address this challenge is to replace the LE with a gel polymer electrolyte (GPE). However, the limited ionic conductivity of state-of-the-art GPEs and poor electrode/GPE interfaces greatly restrict their implementation. Herein, we report, for the first time, a facile in-situ synthesis of pentaerythritol tetraacrylate (PETEA)-based GPE with an extremely high ionic conductivity (1.13 x 10(-2) S cm(-1)). Quite intriguingly, even interfaced with a bare sulfur cathode, this GPE rendered the resulting polymer Li-S battery with a low electrode/GPE interfacial resistance, high rate capacity (601.2 mA h g(-1) at 1 C) and improved capacity retention (81.9% after 400 cycles at 0.5 C). These remarkable performances can be ascribed to the immobilization of soluble polysulfides imparted by PETEA-based GPE and the construction of a robust integrated GPE/electrode interface. Notably, due to the tight adhesion between the PETEA-based GPE and electrodes, a high-performance flexible polymer Li-S battery was successfully crafted. This work therefore opens up a convenient, low-cost and effective way to substantially enhance the capability of Li-S batteries, a key step toward capitalizing on GPE for high-performance Li-S batteries. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:278 / 289
页数:12
相关论文
共 48 条
[1]   Plastic crystal-lithium batteries: An effective ambient temperature all-solid-state power source [J].
Abouimrane, A ;
Abu-Lebdeb, Y ;
Alarco, PJ ;
Armand, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1028-A1031
[2]   KINETICS AND STABILITY OF THE LITHIUM ELECTRODE IN POLY(METHYLMETHACRYLATE)-BASED GEL ELECTROLYTES [J].
APPETECCHI, GB ;
CROCE, F ;
SCROSATI, B .
ELECTROCHIMICA ACTA, 1995, 40 (08) :991-997
[3]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery [J].
Chang, DR ;
Lee, SH ;
Kim, SW ;
Kim, HT .
JOURNAL OF POWER SOURCES, 2002, 112 (02) :452-460
[6]   Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes [J].
Choi, Jae-Won ;
Kim, Jin-Kyu ;
Cheruvally, Gouri ;
Ahn, Jou-Hyeon ;
Ahn, Hyo-Jun ;
Kim, Ki-Won .
ELECTROCHIMICA ACTA, 2007, 52 (05) :2075-2082
[7]   Reconstruction of Holocene coastal progradation on the east coast of Korea based on OSL dating and GPR surveys of beach-foredune ridges [J].
Choi, Kwang Hee ;
Choi, Jeong-Heon ;
Kim, Jong Wook .
HOLOCENE, 2014, 24 (01) :24-34
[8]   A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
CHEMICAL COMMUNICATIONS, 2014, 50 (32) :4184-4187
[9]  
Chung WJ, 2013, NAT CHEM, V5, P518, DOI [10.1038/NCHEM.1624, 10.1038/nchem.1624]
[10]   A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning [J].
Croce, Fausto ;
Focarete, Maria Letizia ;
Hassoun, Jusef ;
Meschini, Ida ;
Scrosati, Bruno .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :921-927