Lattice φ4 field theory on Riemann manifolds: Numerical tests for the 2D Ising CFT on S2

被引:18
作者
Brower, Richard C. [1 ]
Cheng, Michael [1 ]
Weinberg, Evan S. [1 ]
Fleming, George T. [2 ]
Gasbarro, Andrew D. [2 ]
Raben, Timothy G. [3 ,4 ]
Tan, Chung-, I [3 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Yale Univ, Sloane Lab, New Haven, CT 06520 USA
[3] Brown Univ, Providence, RI 02912 USA
[4] Univ Kansas, Lawrence, KS 66045 USA
关键词
INFINITE CONFORMAL SYMMETRY; FEYNMAN-INTEGRALS; RENORMALIZATION; UNIVERSALITY; PARAMETERS; DIMENSIONS;
D O I
10.1103/PhysRevD.98.014502
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a method for defining a lattice realization of the phi(4) quantum field theory on a simplicial complex in order to enable numerical computation on a general Riemann manifold. The procedure begins with adopting methods from traditional Regge calculus (RC) and finite element methods (FEM) plus the addition of ultraviolet counterterms required to reach the renormalized field theory in the continuum limit. The construction is tested numerically for the two-dimensional phi(4) scalar field theory on the Riemann twosphere, S-2, in comparison with the exact solutions to the two-dimensional Ising conformal field theory (CFT). Numerical results for the Binder cumulants (up to 12th order) and the two-and four-point correlation functions are in agreement with the exact c = 1/2 CFT solutions.
引用
收藏
页数:26
相关论文
共 53 条
[1]   OVER-RELAXATION METHOD FOR THE MONTE-CARLO EVALUATION OF THE PARTITION-FUNCTION FOR MULTIQUADRATIC ACTIONS [J].
ADLER, SL .
PHYSICAL REVIEW D, 1981, 23 (12) :2901-2904
[2]  
[Anonymous], ARXIV13091206
[3]  
[Anonymous], 2008, ANAL FINITE ELEMENT
[4]  
[Anonymous], 1997, WORLD SCI LECT NOTES, V59, P1
[5]   Strongly interacting dynamics and the search for new physics at the LHC [J].
Appelquist, T. ;
Brower, R. C. ;
Fleming, G. T. ;
Hasenfratz, A. ;
Jin, X. Y. ;
Kiskis, J. ;
Neil, E. T. ;
Osborn, J. C. ;
Rebbi, C. ;
Rinaldi, E. ;
Schaich, D. ;
Vranas, P. ;
Weinberg, E. ;
Witzel, O. .
PHYSICAL REVIEW D, 2016, 93 (11)
[6]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[7]   INFINITE CONFORMAL SYMMETRY OF CRITICAL FLUCTUATIONS IN 2 DIMENSIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
JOURNAL OF STATISTICAL PHYSICS, 1984, 34 (5-6) :763-774
[8]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[9]   Monte Carlo tests of renormalization-group predictions for critical phenomena in Ising models [J].
Binder, K ;
Luijten, E .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 344 (4-6) :179-253
[10]   ISING UNIVERSALITY IN 3 DIMENSIONS - A MONTE-CARLO STUDY [J].
BLOTE, HWJ ;
LUIJTEN, E ;
HERINGA, JR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (22) :6289-6313