Engineering QND measurements for continuous variable quantum information processing

被引:4
作者
Paris, MGA [1 ]
机构
[1] INFM, Quantum Opt & Informat Grp, Pavia, Italy
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2003年 / 51卷 / 2-3期
关键词
D O I
10.1002/prop.200310027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel scheme to realize the whole class of quantum nondemolition (QND) measurements of a field quadrature is suggested. The setup requires linear optical components and squeezers, and allows optimal QND measurements of quadratures, which minimize the information gain versus state disturbance trade-off.
引用
收藏
页码:202 / 206
页数:5
相关论文
共 12 条
  • [1] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443
  • [2] Improving quantum interferometry by using entanglement
    D'Ariano, GM
    Paris, MGA
    Perinotti, P
    [J]. PHYSICAL REVIEW A, 2002, 65 (06): : 9
  • [3] Entanglement purification of Gaussian continuous variable quantum states
    Duan, LM
    Giedke, G
    Cirac, JI
    Zoller, P
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (17) : 4002 - 4005
  • [4] Unconditional quantum teleportation
    Furusawa, A
    Sorensen, JL
    Braunstein, SL
    Fuchs, CA
    Kimble, HJ
    Polzik, ES
    [J]. SCIENCE, 1998, 282 (5389) : 706 - 709
  • [5] JULSGAARD B, QUANTPH0106057 LANL
  • [6] QUANTUM-NONDEMOLITION MEASUREMENTS AND THE COLLAPSE OF THE WAVE-FUNCTION
    KARTNER, FX
    HAUS, HA
    [J]. PHYSICAL REVIEW A, 1993, 47 (06): : 4585 - 4590
  • [7] Kass R. E., 1989, STAT SCI, P188, DOI [10.1214/ss/1177012486, DOI 10.1214/SS/1177012480, 10.1214/ss/1177012480]
  • [8] BACK-ACTION EVADING MEASUREMENTS OF AN OPTICAL-FIELD USING PARAMETRIC DOWN CONVERSION
    LAPORTA, A
    SLUSHER, RE
    YURKE, B
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (01) : 28 - 31
  • [9] LEVENSON MD, 1986, PHYS REV LETT, V57, P2743
  • [10] CONDITIONAL-PROBABILITY AND A-POSTERIORI STATES IN QUANTUM-MECHANICS
    OZAWA, M
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1985, 21 (02) : 279 - 295