Sharp estimation in sup norm with random design

被引:8
作者
Gaiffas, Stephane [1 ]
机构
[1] Univ Paris 07, UMR 7599, Lab Probabil & Modeles Aleatoires, F-75251 Paris 05, France
关键词
random design; non-parametric regression; sharp estimation; inhomogeneous data;
D O I
10.1016/j.spl.2006.11.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the estimation of a function based on noisy inhomogeneous data (the amount of data can vary on the estimation domain). We consider the model of regression with random design, where the design density is unknown. We construct an asymptotically sharp estimator which converges, for sup norm error loss, with a spatially dependent normalisation which is sensitive to the variations in the local amount of data. This estimator combines both kernel and local polynomial methods, and it does not depend within its construction on the design density. Then, we prove that the normalisation is optimal in an appropriate sense. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:782 / 794
页数:13
相关论文
共 19 条
[1]  
ARESTOV VV, 1990, P STEKLOV I MATH, V4, P1
[2]   Asymptotically exact minimax estimation in sup-norm for anisotropic Holder classes [J].
Bertin, K .
BERNOULLI, 2004, 10 (05) :873-888
[3]   Minimax exact constant in sup-norm for nonparametric regression with random design [J].
Bertin, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 123 (02) :225-242
[4]  
Brown LD, 2002, ANN STAT, V30, P688
[5]  
Brown LD, 1996, ANN STAT, V24, P2384
[6]   RENORMALIZATION EXPONENTS AND OPTIMAL POINTWISE RATES OF CONVERGENCE [J].
DONOHO, DL ;
LOW, MG .
ANNALS OF STATISTICS, 1992, 20 (02) :944-970
[7]   ASYMPTOTIC MINIMAX RISK FOR SUP-NORM LOSS - SOLUTION VIA OPTIMAL RECOVERY [J].
DONOHO, DL .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (02) :145-170
[8]  
FULLER AT, 1961, AUTOMAT REMOTE CONTR, V1
[9]  
GAIFFAS S, 2005, MATH METHODS STAT, V1, P1
[10]  
GAIFFAS S, 2005, SHARP ESTIMATION SUP