RAYLEIGH-RITZ APPROXIMATION OF THE INF-SUP CONSTANT FOR THE DIVERGENCE

被引:7
作者
Gallistl, Dietmar [1 ,2 ]
机构
[1] Karlsruhe Inst Technol, Inst Angew & Numer Math, D-76128 Karlsruhe, Germany
[2] Univ Twente, Dept Appl Math, POB 217, NL-7500 AE Enschede, Netherlands
关键词
Inf-sup constant; LBB constant; Stokes system; noncompact eigen-value problem; Cosserat spectrum; upper bounds; ELEMENT APPROXIMATION; INEQUALITIES; EQUATION; DOMAINS;
D O I
10.1090/mcom/3327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for computing approximations to the inf-sup constant of the divergence operator in bounded Lipschitz polytopes in R-n is proposed. The method is based on a conforming approximation of the pressure space based on piecewise polynomials of some fixed degree k >= 0. The scheme can be viewed as a Rayleigh-Ritz method and it gives monotonically decreasing approximations of the inf-sup constant under mesh refinement. The new approximation replaces the H-1 norm of a gradient by a discrete H-1 norm which behaves monotonically under mesh refinement. By discretizing the pressure space with piecewise polynomials, upper bounds to the inf-sup constant are obtained. Error estimates are presented that prove convergence rates for the approximation of the inf-sup constant provided it is an isolated eigenvalue of the corresponding noncompact eigenvalue problem; otherwise, plain convergence is achieved. Numerical computations on uniform and adaptive meshes are provided.
引用
收藏
页码:73 / 89
页数:17
相关论文
共 30 条
[1]   Solutions of the divergence operator on John domains [J].
Acosta, Gabriel ;
Duran, Ricardo G. ;
Muschietti, Maria A. .
ADVANCES IN MATHEMATICS, 2006, 206 (02) :373-401
[2]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[3]  
Babuska I., 1991, Finite element methods, V2, P640
[4]   CONTINUITY PROPERTIES OF THE INF-SUP CONSTANT FOR THE DIVERGENCE [J].
Bernardi, Christine ;
Costabel, Martin ;
Dauge, Monique ;
Girault, Vivette .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) :1250-1271
[5]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[6]  
Boffi D., 2008, LECT NOTES MATH, V1939
[7]  
Boffi D., 2013, Mixed finite element methods and applications, V44, pxiv, DOI [10.1007/978-3-642-36519-5, DOI 10.1007/978-3-642-36519-5]
[8]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[9]  
BOGOVSKII ME, 1979, DOKL AKAD NAUK SSSR+, V248, P1037
[10]  
Braess D., 2007, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, V3, DOI DOI 10.1017/CBO9780511618635