An approximation scheme for stochastic controls in continuous time

被引:2
作者
Nakano, Yumiharu [1 ]
机构
[1] Tokyo Inst Technol, Grad Sch Innovat Management, 2-12-1 W9-117 Ookayama, Tokyo 1528552, Japan
关键词
Stochastic controls; Hamilton-Jacobi-Bellman equations; Viscosity solutions; Kernel density estimation; Monte Carlo methods; CONVERGENCE; SIMULATION;
D O I
10.1007/s13160-014-0157-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a simple time-discretization scheme for multi-dimensional stochastic optimal control problems in continuous time. It is based on a probabilistic representation for the convolution of the value function by a probability density function. We show the convergence results under mild conditions on coefficients of the problems by Barles-Souganidis viscosity solution method. Resulting numerical methods allow us to use uncontrolled Markov processes to estimate the conditional expectations in the dynamic programming procedure. Moreover, it can be implemented without the interpolation of the value function or the adjustment of the diffusion matrix.
引用
收藏
页码:681 / 696
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 2000, LECT NOTES MATH
[2]  
[Anonymous], 1999, ELECTRON J PROBAB
[3]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[4]   On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations [J].
Barles, G ;
Jakobsen, ER .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) :33-54
[5]   Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations [J].
Barles, Guy ;
Jakobsen, Espen R. .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1861-1893
[6]   A fast algorithm for the two dimensional HJB equation of stochastic control [J].
Bonnans, JF ;
Ottenwaelter, E ;
Zidani, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2004, 38 (04) :723-735
[7]   Consistency of generalized finite difference schemes for the stochastic HJB equation [J].
Bonnans, JF ;
Zidani, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) :1008-1021
[8]   Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations [J].
Bouchard, B ;
Touzi, N .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 111 (02) :175-206
[9]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[10]  
Carlini E., 2004, Computing and Visualization in Science, V7, P15, DOI 10.1007/s00791-004-0124-5