Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays

被引:552
作者
Ma, Ming [1 ]
Djanashvili, Kristina [2 ]
Smith, Wilson A. [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, MECS, POB 5045, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Dept Biotechnol, POB 5045, NL-2600 GA Delft, Netherlands
关键词
carbon dioxide; CO2; conversion; electrocatalysis; heterogeneous catalysis; nanowires; CARBON-DIOXIDE; COPPER; ELECTROREDUCTION; ELECTRODES; SELECTIVITY; EFFICIENCY; CATALYSTS;
D O I
10.1002/anie.201601282
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, the effect of Cu nanowire morphology on the selective electrocatalytic reduction of CO2 is presented. Cu nanowire arrays were prepared through a two-step synthesis of Cu(OH)(2) and CuO nanowire arrays on Cu foil substrates and a subsequent electrochemical reduction of the CuO nanowire arrays to Cu nanowire arrays. By this simple synthesis method, Cu nanowire array electrodes with different length and density were able to be controllably synthesized. We show that the selectivity for hydrocarbons (ethylene, n-propanol, ethane, and ethanol) on Cu nanowire array electrodes at a fixed potential can be tuned by systematically altering the Cu nanowire length and density. The nanowire morphology effect is linked to the increased local pH in the Cu nanowire arrays and a reaction scheme detailing the local pH-induced formation of C-2 products is also presented by a preferred CO dimerization pathway.
引用
收藏
页码:6680 / 6684
页数:5
相关论文
共 30 条
[1]  
Calle-Vallejo F., 2013, Ang. Chem., V125, P7423, DOI [DOI 10.1002/ange.201301470, 10.1002/anie.201301470, DOI 10.1002/ANIE.201301470]
[2]   Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) :7282-7285
[3]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[4]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[5]   Selective Conversion of CO2 to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst [J].
DiMeglio, John L. ;
Rosenthal, Joel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (24) :8798-8801
[6]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[7]   FORMATION OF HYDROCARBONS IN THE ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE AT A COPPER ELECTRODE IN AQUEOUS-SOLUTION [J].
HORI, Y ;
MURATA, A ;
TAKAHASHI, R .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1989, 85 :2309-2326
[8]  
Hori Y, 2008, MOD ASP ELECTROCHEM, P89
[9]   Electrochemical reduction of CO at a copper electrode [J].
Hori, Y ;
Takahashi, R ;
Yoshinami, Y ;
Murata, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (36) :7075-7081
[10]   Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO2 Electroreduction by Process Conditions [J].
Kas, Recep ;
Kortlever, Ruud ;
Yilmaz, Hasan ;
Koper, Marc T. M. ;
Mul, Guido .
CHEMELECTROCHEM, 2015, 2 (03) :354-358