Automatic Plaque Segmentation in Coronary Optical Coherence Tomography Images

被引:7
作者
Zhang, Huaqi [1 ]
Wang, Guanglei [1 ]
Li, Yan [1 ]
Lin, Feng [2 ]
Han, Yechen [3 ]
Wang, Hongrui [1 ]
机构
[1] Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[3] Peking Union Med Coll Hosp, Dept Rheumatol, Beijing 100005, Peoples R China
关键词
Coronary atherosclerotic heart disease; plaque; optical coherence tomography; adaptive weight; convolutional neural network; random walk; CT; DISEASE; LESIONS;
D O I
10.1142/S0218001419540351
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coronary optical coherence tomography (OCT) is a new high-resolution intravascular imaging technology that clearly depicts coronary artery stenosis and plaque information. Study of coronary OCT images is of significance in the diagnosis of coronary atherosclerotic heart disease (CAD). We introduce a new method based on the convolutional neural network (CNN) and an improved random walk (RW) algorithm for the recognition and segmentation of calcified, lipid and fibrotic plaque in coronary OCT images. First, we design CNN with three different depths (2, 4 or 6 convolutional layers) to perform the automatic recognition and select the optimal CNN model. Then, we device an improved RW algorithm. According to the gray-level distribution characteristics of coronary OCT images, the weights of intensity and texture term in the weight function of RW algorithm are adjusted by an adaptive weight. Finally, we apply mathematical morphology in combination with two RWs to accurately segment the plaque area. Compared with the ground truth of clinical segmentation results, the Jaccard similarity coefficient (JSC) of calcified and lipid plaque segmentation results is 0.864, the average symmetric contour distance (ASCD) is 0.375 mm, the JSC and ASCD reliabilities are 88.33% and 92.50% respectively. The JSC of fibrotic plaque is 0.876, the ASCD is 0.349 mm, the JSC and ASCD reliabilities are 90.83% and 95.83% respectively. In addition, the average segmentation time (AST) does not exceed 5 s. Reliable and significantly improved results have been achieved in this study. Compared with the CNN, traditional RW algorithm and other methods. The proposed method has the advantages of fast segmentation, high accuracy and reliability, and holds promise as an aid to doctors in the diagnosis of CAD.
引用
收藏
页数:23
相关论文
共 33 条
[1]  
Adame I. M., 2016, P SOC PHOTO-OPT INS, V5370, P265
[2]   Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images [J].
Athanasiou, Lambros S. ;
Bourantas, Christos V. ;
Rigas, George ;
Sakellarios, Antonis I. ;
Exarchos, Themis P. ;
Siogkas, Panagiotis K. ;
Ricciardi, Andrea ;
Naka, Katerina K. ;
Papafaklis, Michail I. ;
Michalis, Lampros K. ;
Prati, Francesco ;
Fotiadis, Dimitrios I. .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (02)
[3]  
Benjamin EJ, 2017, CIRCULATION, V135, pE146, DOI [10.1161/CIR.0000000000000485, 10.1161/CIR.0000000000000558, 10.1161/CIR.0000000000000530]
[4]   Convolutional Random Walk Networks for Semantic Image Segmentation [J].
Bertasius, Gedas ;
Torresani, Lorenzo ;
Yu, Stella X. ;
Shi, Jianbo .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6137-6145
[5]   Optical Coherence Tomography Versus Intravascular Ultrasound to Evaluate Coronary Artery Disease and Percutaneous Coronary Intervention [J].
Bezerra, Hiram G. ;
Attizzani, Guilherme F. ;
Sirbu, Vasile ;
Musumeci, Giuseppe ;
Lortkipanidze, Nikoloz ;
Fujino, Yusuke ;
Wang, Wei ;
Nakamura, Sunao ;
Erglis, Andrej ;
Guagliumi, Giulio ;
Costa, Marco A. .
JACC-CARDIOVASCULAR INTERVENTIONS, 2013, 6 (03) :228-236
[6]   In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading [J].
Celi, Simona ;
Berti, Sergio .
MEDICAL IMAGE ANALYSIS, 2014, 18 (07) :1157-1168
[7]   Clinical validation of an algorithm for rapid and accurate automated segmentation of intracoronary optical coherence tomography images [J].
Chatzizisis, Yiannis S. ;
Koutkias, Vassilis G. ;
Toutouzas, Konstantinos ;
Giannopoulos, Andreas ;
Chouvarda, Ioanna ;
Riga, Maria ;
Antoniadis, Antonios P. ;
Cheimariotis, Grigorios ;
Doulaverakis, Charalampos ;
Tsampoulatidis, Ioannis ;
Bouki, Konstantina ;
Kompatsiaris, Ioannis ;
Stefanadis, Christodoulos ;
Maglaveras, Nicos ;
Giannoglou, George D. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2014, 172 (03) :568-580
[8]   Esophagus segmentation in CT via 3D fully convolutional neural network and random walk [J].
Fechter, Tobias ;
Adebahr, Sonja ;
Baltas, Dimos ;
Ben Ayed, Ismail ;
Desrosiers, Christian ;
Dolz, Jose .
MEDICAL PHYSICS, 2017, 44 (12) :6341-6352
[9]  
Feng Xinyang, 2017, Med Image Comput Comput Assist Interv, V10435, P568, DOI 10.1007/978-3-319-66179-7_65
[10]   Coronary optical coherence tomography: A practical overview of current clinical applications [J].
Ferreira, Rui Cruz ;
Pereira-da-Silva, Tiago ;
Patricio, Lino ;
Bezerra, Hiram ;
Costa, Marco .
REVISTA PORTUGUESA DE CARDIOLOGIA, 2016, 35 (02) :105-112