Non-Linear Classification using Higher Order Pi-Sigma Neural Network and Improved Particle Swarm Optimization: An Experimental Analysis

被引:4
作者
Kanungo, D. P. [1 ]
Nayak, Janmenjoy [1 ]
Naik, Bighnaraj [1 ]
Behera, H. S. [1 ]
机构
[1] Veer Surendra Sai Univ Technol, Dept Comp Sci Engn & Informat Technol, Sambalpur 768018, Odisha, India
来源
COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM, VOL 2 | 2016年 / 411卷
关键词
Higher order neural network; Classification; PSO; Pi-Sigma neural network;
D O I
10.1007/978-81-322-2731-1_48
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a higher order neural network called Pi-Sigma neural network with an improved Particle swarm optimization has been proposed for data classification. The proposed method is compared with some of the other classifiers like PSO-PSNN, GA-PSNN and only PSNN. Simulation results reveal that, the proposed IPSO-PSNN outperforms others and has better classification accuracy. The result of the proposed method is tested with the ANOVA statistical tool, which proves that the method is statistically valid.
引用
收藏
页码:507 / 518
页数:12
相关论文
共 22 条
[1]  
Alcalá-Fdez J, 2011, J MULT-VALUED LOG S, V17, P255
[2]  
[Anonymous], P 3 INT C FRONT INT
[3]  
Bache K., 2013, UCI Machine Learning Repository
[4]  
Dai Y.S., 2011, IJ INTELLIGENT SYSTE, V5, P34
[5]   An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification [J].
Dehuri, Satchidananda ;
Roy, Rahul ;
Cho, Sung-Bae ;
Ghosh, Ashish .
JOURNAL OF SYSTEMS AND SOFTWARE, 2012, 85 (06) :1333-1345
[6]  
Fisher R.A., 1959, Statistical Methods and Scientific Inference, V2nd ed.
[7]   Permutation invariant polynomial neural network approach to fitting potential energy surfaces. III. Molecule-surface interactions [J].
Jiang, Bin ;
Guo, Hua .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (03)
[8]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[9]   Application of the FCM-based neuro-fuzzy inference system and genetic algorithm-polynomial neural network approaches to modelling the thermal conductivity of alumina-water nanofluids [J].
Mehrabi, M. ;
Sharifpur, M. ;
Meyer, J. P. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (07) :971-977
[10]  
Naik B., 2015, EM ICT BRIDG FUT P 4, V2