Simultaneous operating temperature and output power prediction method for photovoltaic modules

被引:12
作者
Dong, Xiao-Jian [1 ]
Shen, Jia-Ni [1 ]
Ma, Zi-Feng [1 ]
He, Yi-Jun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Electrochem Energy Devices Res Ctr, Dept Chem Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Photovoltaic; Operating temperature; Output power; Hybrid modeling method; Simultaneous optimization model; RBF NEURAL-NETWORK; 5; PARAMETERS; PV MODULES; MODEL; IMPLEMENTATION; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.energy.2022.124909
中图分类号
O414.1 [热力学];
学科分类号
摘要
Accurate cell temperature and output power prediction are vital for the optimal design and operation of photovoltaic (PV) systems. However, capturing the accurate relationships between cell temperature/circuit parameters and weather conditions is still a challenging task. In this study, a universal radial basis function neural network based hybrid modeling approach is proposed to model the cell temperature and circuit parameters. A simultaneous optimization model with l(1) norm penalty is established and a separate parameter estimation strategy is proposed to handle the high computational parameter estimation procedure. The effectiveness of the proposed hybrid modeling approach is validated based on four practical experimental datasets of both commercial and laboratory PV plants. It is thus indicated that the proposed modeling approach could provide a promising potential solution framework for the accurate output power prediction under different PV types and relatively wide weather conditions.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach [J].
Abbassi, Abdelkader ;
Abbassi, Rabeh ;
Heidari, Ali Asghar ;
Oliva, Diego ;
Chen, Huiling ;
Habib, Arslan ;
Jemli, Mohamed ;
Wang, Mingjing .
ENERGY, 2020, 198
[2]   Electrical characterization of photovoltaic modules using farmland fertility optimizer [J].
Agwa, Ahmed M. ;
El-Fergany, Attia A. ;
Maksoud, Hady A. .
ENERGY CONVERSION AND MANAGEMENT, 2020, 217
[3]   A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization [J].
Ahmed, R. ;
Sreeram, V ;
Mishra, Y. ;
Arif, M. D. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 124
[4]   Enhanced RBF neural network model for time series prediction of solar cells panel depending on climate conditions (temperature and irradiance) [J].
Awad, Mohammed ;
Qasrawi, Ibrahim .
NEURAL COMPUTING & APPLICATIONS, 2018, 30 (06) :1757-1768
[5]   Development of a new compound method to extract the five parameters of PV modules [J].
Bai, Jianbo ;
Liu, Sheng ;
Hao, Yuzhe ;
Zhang, Zhen ;
Jiang, Meng ;
Zhang, Yu .
ENERGY CONVERSION AND MANAGEMENT, 2014, 79 :294-303
[6]   A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization [J].
Blasco, X. ;
Herrero, J. M. ;
Sanchis, J. ;
Martinez, M. .
INFORMATION SCIENCES, 2008, 178 (20) :3908-3924
[7]   A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module [J].
Bonanno, F. ;
Capizzi, G. ;
Graditi, G. ;
Napoli, C. ;
Tina, G. M. .
APPLIED ENERGY, 2012, 97 :956-961
[8]   A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances [J].
Carrero, C. ;
Amador, J. ;
Arnaltes, S. .
RENEWABLE ENERGY, 2007, 32 (15) :2579-2589
[9]   Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review [J].
Chin, Vun Jack ;
Salam, Zainal ;
Ishaque, Kashif .
APPLIED ENERGY, 2015, 154 :500-519
[10]   A comparison of different one-diode models for the representation of I-V characteristic of a PV cell [J].
Ciulla, Giuseppina ;
Lo Brano, Valerio ;
Di Dio, Vincenzo ;
Cipriani, Giovanni .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 32 :684-696