Stock price prediction using deep learning and frequency decomposition

被引:168
|
作者
Rezaei, Hadi [1 ]
Faaljou, Hamidreza [1 ]
Mansourfar, Gholamreza [1 ]
机构
[1] Urmia Univ, Econ & Management Dept, Orumiyeh, West Azerbaijan, Iran
关键词
Stock price prediction; LSTM; CNN; Empirical mode decomposition (EMD); CEEMD; SUPPORT VECTOR REGRESSION; TIME-SERIES; MODEL;
D O I
10.1016/j.eswa.2020.114332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlinearity and high volatility of financial time series have made it difficult to predict stock price. However, thanks to recent developments in deep learning and methods such as long short-term memory (LSTM) and convolutional neural network (CNN) models, significant improvements have been obtained in the analysis of this type of data. Further, empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition (CEEMD) algorithms decomposing time series to different frequency spectra are among the methods that could be effective in analyzing financial time series. Based on these theoretical frameworks, we propose novel hybrid algorithms, i.e., CEEMD-CNN-LSTM and EMD-CNN-LSTM, which could extract deep features and time sequences, which are finally applied to one-step-ahead prediction. The concept of the suggested algorithm is that when combining these models, some collaboration is established between them that could enhance the analytical power of the model. The practical findings confirm this claim and indicate that CNN alongside LSTM and CEEMD or EMD could enhance the prediction accuracy and outperform other counterparts. Further, the suggested algorithm with CEEMD provides better performance compared to EMD.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Stock Price Prediction on Daily Stock Data using Deep Neural Networks
    Jain, Sneh
    Gupta, Roopam
    Moghe, Asmita A.
    2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATION AND TELECOMMUNICATION (ICACAT), 2018,
  • [2] A Survey of Forex and Stock Price Prediction Using Deep Learning
    Hu, Zexin
    Zhao, Yiqi
    Khushi, Matloob
    APPLIED SYSTEM INNOVATION, 2021, 4 (01)
  • [3] Hybrid Deep Learning Model for Stock Price Prediction
    Hossain, Mohammad Asiful
    Karim, Rezaul
    Thulasiram, Ruppa
    Bruce, Neil D. B.
    Wang, Yang
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1837 - 1844
  • [4] Short Term Stock Price Prediction Using Deep Learning
    Khare, Kaustubh
    Darekar, Omkar
    Gupta, Prafull
    Attar, V. Z.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 482 - 486
  • [5] Accurate Stock Price Forecasting Based on Deep Learning and Hierarchical Frequency Decomposition
    Li, Yi
    Chen, Lei
    Sun, Cuiping
    Liu, Guoxu
    Chen, Chunlei
    Zhang, Yonghui
    IEEE ACCESS, 2024, 12 : 49878 - 49894
  • [6] Comparitive Study of Time Series and Deep Learning Algorithms for Stock Price Prediction
    Sivapurapu, Santosh Ambaprasad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (06) : 460 - 470
  • [7] Stock Price Prediction in the Financial Market Using Machine Learning Models
    Teixeira, Diogo M.
    Barbosa, Ramiro S.
    COMPUTATION, 2025, 13 (01)
  • [8] Deep Learning for Financial News Analysis and Stock Price Prediction: A Case Study of TCS
    Dhyani, Bijesh
    Taneja, Sanjay
    Prakash, Chandra
    Tiwari, Rajesh
    Ozen, Ercan
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2024, 15 (03) : 153 - 166
  • [9] Deep Learning for Stock Price Prediction and Portfolio Optimization
    Sebastian, Ashy
    Tantia, Dr. Veerta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (09) : 926 - 941
  • [10] Stock Price Prediction Using a Frequency Decomposition Based GRU Transformer Neural Network
    Li, Chengyu
    Qian, Guoqi
    APPLIED SCIENCES-BASEL, 2023, 13 (01):