Robot Modeling and Control Using the Motor Algebra Framework

被引:0
作者
Bayro-Corrochano, Eduardo [1 ]
机构
[1] CINVESTAV, Dept Elect Engn & Comp Sci, Campus Guadalajara, Guadalajara, Jalisco, Mexico
来源
2019 12TH INTERNATIONAL WORKSHOP ON ROBOT MOTION AND CONTROL (ROMOCO '19) | 2019年
关键词
Iterative Newton-Euler; N-E modeling; motor algebra; geometric algebra; dynamic model; nonlinear control; SE(3) PD control; sliding mode control; robot arms; tracking;
D O I
10.1109/romoco.2019.8787386
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic model of a robot arm is derived based on the iterative Newton-Euler formalism in terms of screw theory in the motor algebra framework. The iterative method allows us to compute the local dynamic model of each joint and therefore to apply localized non-linear controllers. In the experimental analysis, we compare a SE(3) PD and a sliding mode controllers. The experimental analysis shows that our control law is stable and tracks a non-linear trajectory.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 10 条
  • [1] Ablamowicks R., 2018, ABLAMOWICKS R ECLIFF
  • [2] [Anonymous], 1871, Proc. London Math. Soc., Vs1-4, P381, DOI [10.1112/plms/s1-4.1.381, DOI 10.1112/PLMS/S1-4.1.381]
  • [3] Motor algebra for 3D kinematics: The case of the hand-eye calibration
    Bayro-Corrochano, E
    Daniilidis, K
    Sommer, G
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2000, 13 (02) : 79 - 100
  • [4] Bayro-Corrochano E., 2018, GEOMETRIC ALGEBRA AP, VI
  • [5] Bayro-Corrochano E., 2019, NEWTON EULER MODELLI
  • [6] Bullow F., 1995, 95010 CDS
  • [7] Khalil H. K., 2002, Nonlinear Systems, V3rd
  • [8] Selig J., 2005, GEOMETRIC FUNDAMENTA
  • [9] Utkin V, 1992, Sliding modes in control and optimization
  • [10] Woodhouse N.M.J., 1987, INTRO ANAL DYNAMICS