Fatigue Life Prediction of Aluminum Using Artificial Neural Network

被引:0
作者
Jimenez-Martinez, Moises [1 ]
Alfaro-Ponce, Mariel [2 ]
机构
[1] Tecnol Monterrey, Sch Engn & Sci, Puebla, Mexico
[2] Tecnol Monterrey, Sch Engn & Sci, BME Program, Cdmx, Mexico
关键词
Lightweight; Aluminum; S-N curves; Artificial Neural Network; Durability; MECHANICAL-PROPERTIES; ALLOY; OPTIMIZATION; DAMAGE; TEMPERATURE; COMPOSITE; STRENGTH; JOINTS; MODEL;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lightweight materials are currently being more used in mechanical components due to their mechanical behaviour and lighter weight. To prevent failures on the service life is necessary to predict its fatigue life. To perform the life evaluation, the durability assessment is used to establish the damage applied by fatigue loads and the number of load cycles or spectrum repetitions versus material fatigue properties using its S-N curves to calculate the accumulated damage. This information is evaluated using a fatigue damage hypothesis. An artificial neural network (ANN) is proposed to predict the fatigue life based on material ultimate tensile strength (UTS). This is the first part of research to develop aluminum alloy through ANN based on the expected fatigue strength. The evaluation performed with results in literature with different types of aluminum:5056, 2198-T851, 2024-T3 and 7050-T7451 has been proved that ANN can predict the fatigue life-improving its accuracy over traditional and modified damage rules.
引用
收藏
页码:704 / 709
页数:6
相关论文
共 36 条
[1]   Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading [J].
Alexopoulos, Nikolaos D. ;
Migklis, Evangelos ;
Stylianos, Antonis ;
Myriounis, Dimitrios P. .
INTERNATIONAL JOURNAL OF FATIGUE, 2013, 56 :95-105
[2]   Fatigue analysis for the aluminum alloy 7050-T7451 performed by a two scale continuum damage mechanics model [J].
Araujo, L. M. ;
Ferreira, G., V ;
Neves, R. S. ;
Malcher, L. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2020, 105
[3]   Neural network model for 7000 (Al-Z) alloys: Classification and prediction of mechanical properties [J].
Belayadi, Adel ;
Bourahla, Boualem .
PHYSICA B-CONDENSED MATTER, 2019, 554 :114-120
[4]   Prediction of shear and tensile strength of the diffusion bonded AA5083 and AA7075 aluminium alloy using ANN [J].
Britto, A. Sagai Francis ;
Raj, R. Edwin ;
Mabel, M. Carolin .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 692 :1-8
[5]   Influence of shot peening on fatigue durability of normalized steel subjected to variable amplitude loading [J].
Dalaei, K. ;
Karlsson, B. .
INTERNATIONAL JOURNAL OF FATIGUE, 2012, 38 :75-83
[6]   Predicting of mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels using neural network modeling [J].
Dini, G. ;
Najafizadeh, A. ;
Monir-Vaghefi, S. M. ;
Ebnonnasir, A. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (04) :959-965
[7]   Flexible rolling of aluminium alloy sheet-Process optimization and control of materials properties [J].
Engler, Olaf ;
Schaefer, C. ;
Brinkman, H. J. ;
Brecht, J. ;
Beiter, P. ;
Nijhof, K. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 229 :139-148
[8]   Lifetime prediction using accelerated test data and neural networks [J].
Freitag, S. ;
Beer, M. ;
Graf, W. ;
Kaliske, M. .
COMPUTERS & STRUCTURES, 2009, 87 (19-20) :1187-1194
[9]   Development of processing map for 6061 Al/15% SiCP through neural networks [J].
Ganesan, G ;
Raghukandan, K ;
Karthikeyan, R ;
Pai, BC .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 166 (03) :423-429
[10]  
Guan Huanxin, 2020, IAENG INT J COMPUTER, V47, P567