Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method

被引:16
作者
Griffiths, J. T. [1 ]
Zhu, T. [1 ]
Oehler, F. [1 ]
Emery, R. M. [1 ]
Fu, W. Y. [1 ]
Reid, B. P. L. [2 ]
Taylor, R. A. [2 ]
Kappers, M. J. [1 ]
Humphreys, C. J. [1 ]
Oliver, R. A. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[2] Univ Oxford, Dept Phys, Oxford OX1 3PU, England
来源
APL MATERIALS | 2014年 / 2卷 / 12期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.4904068
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Non-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than similar to 500 mu eV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral ;peaks at 18 K. (C) 2014 Author(s).
引用
收藏
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 1983, ACM SIGACT NEWS, DOI DOI 10.1145/1008908.1008920
[2]   Defect reduction processes in heteroepitaxial non-polar a-plane GaN films [J].
Hao, Rui ;
Kappers, M. J. ;
Moram, M. A. ;
Humphreys, C. J. .
JOURNAL OF CRYSTAL GROWTH, 2011, 337 (01) :81-86
[3]   Room-Temperature Triggered Single Photon Emission from a III-Nitride Site-Controlled Nanowire Quantum Dot [J].
Holmes, Mark J. ;
Choi, Kihyun ;
Kako, Satoshi ;
Arita, Munetaka ;
Arakawa, Yasuhiko .
NANO LETTERS, 2014, 14 (02) :982-986
[4]   Assessment of defect reduction methods for nonpolar a-plane GaN grown on r-plane sapphire [J].
Johnston, C. F. ;
Kappers, M. J. ;
Moram, M. A. ;
Hollander, J. L. ;
Humphreys, C. J. .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (12) :3295-3299
[5]   PHOTON ANTI-BUNCHING IN RESONANCE FLUORESCENCE [J].
KIMBLE, HJ ;
DAGENAIS, M ;
MANDEL, L .
PHYSICAL REVIEW LETTERS, 1977, 39 (11) :691-695
[6]   Quantum computation with quantum dots [J].
Loss, D ;
DiVincenzo, DP .
PHYSICAL REVIEW A, 1998, 57 (01) :120-126
[7]   Growth and assessment of InGaN quantum dots in a microcavity: A blue single photon source [J].
Oliver, R. A. ;
Jarjour, A. F. ;
Taylor, R. A. ;
Tahraoui, A. ;
Zhang, Y. ;
Kappers, M. J. ;
Humphreys, C. J. .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2008, 147 (2-3) :108-113
[8]   InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal [J].
Oliver, RA ;
Briggs, GAD ;
Kappers, MJ ;
Humphreys, CJ ;
Yasin, S ;
Rice, JH ;
Smith, JD ;
Taylor, RA .
APPLIED PHYSICS LETTERS, 2003, 83 (04) :755-757
[9]   Large internal dipole moment in InGaN/GaN quantum dots [J].
Ostapenko, Irina A. ;
Hoenig, Gerald ;
Kindel, Christian ;
Rodt, Sven ;
Strittmatter, Andre ;
Hoffmann, Axel ;
Bimberg, Dieter .
APPLIED PHYSICS LETTERS, 2010, 97 (06)
[10]   High temperature stability in non-polar (11-20) InGaN quantum dots: Exciton and biexciton dynamics [J].
Reid, B. P. L. ;
Zhu, T. ;
Chan, C. C. S. ;
Kocher, C. ;
Oehler, F. ;
Emery, R. ;
Kappers, M. J. ;
Oliver, R. A. ;
Taylor, R. A. .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 3-4, 2014, 11 (3-4) :702-705