Assessing the Nonlinear Effect of Atmospheric Variables on Primary and Oxygenated Organic Aerosol Concentration Using Machine Learning

被引:10
作者
Qin, Yiming [1 ,8 ]
Ye, Jianhuai [1 ,2 ]
Ohno, Paul [1 ]
Liu, Pengfei [1 ,3 ]
Wang, Junfeng [2 ]
Fu, Pingqing [4 ]
Zhou, Liyuan [5 ]
Li, Yong Jie [6 ,7 ]
Martin, Scot T. [1 ]
Chan, Chak K. [5 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
[4] Tianjin Univ, Sch Earth Syst Sci, Inst Surface Earth Syst Sci, Tianjin 300072, Peoples R China
[5] City Univ Hong Kong, Sch Energy & Environm, Kowloon, Hong Kong 518057, Peoples R China
[6] Univ Macau, Dept Civil & Environm Engn, Taipa 999078, Macao, Peoples R China
[7] Univ Macau, Ctr Reg Oceans, Fac Sci & Technol, Taipa 999078, Macao, Peoples R China
[8] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
来源
ACS EARTH AND SPACE CHEMISTRY | 2022年 / 6卷 / 04期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
partial dependence; machine learning; organic aerosol; nonlinear effect; atmospheric variables; HR-TOF-AMS; PARTICULATE MATTER; METEOROLOGICAL NORMALIZATION; CHEMICAL-CHARACTERIZATION; URBAN ROADSIDE; SOA FORMATION; EMISSIONS; DATASETS; EXHAUST; NITRATE;
D O I
10.1021/acsearthspacechem.1c00443
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic aerosol (OA) accounts for a significant fraction of atmosphericparticulate matter. The OA concentration in the atmosphere is of high variability anddepends on factors such as emission, the atmospheric oxidation process, meteorology,and transport. Due to the complex interactions among the numerous factors, accurateestimation of the effects of target variables on OA concentration is often challenging.Herein, a random forest machine learning algorithm successfully predicted theconcentrations of primary and oxygenated organic aerosol (POA and OOA) at urbanand rural sites in Hong Kong. The random forest model explained more than 80% ofthe observed traffic-POA, cooking-POA, and OOA. In contrast, a multiple linearregression model only explained 30-50% of these OA concentrations. In the randomforest model training process, NOxwas also the most important variable for traffic-POA and cooking-POA. For OOA, multiple parameters were equally crucial in themodel prediction, including NOx,O3, and relative humidity (RH). The dependence ofOA concentrations on atmospheric conditions (e.g., various NOxand O3concentrations and meteorological conditions) wascalculated via the partial dependence algorithm. The results suggested that the dependence of OA concentrations on atmosphericconditions was nonlinear and depended on different condition regimes. The partial dependence algorithm provides insights into thePOA source and OOA formation mechanisms under a complex environment.
引用
收藏
页码:1059 / 1066
页数:8
相关论文
共 35 条
[1]  
Breiman L., 2001, Machine Learning, V45, P5
[2]   Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach [J].
Crippa, M. ;
Canonaco, F. ;
Lanz, V. A. ;
Aijala, M. ;
Allan, J. D. ;
Carbone, S. ;
Capes, G. ;
Ceburnis, D. ;
Dall'Osto, M. ;
Day, D. A. ;
DeCarlo, P. F. ;
Ehn, M. ;
Eriksson, A. ;
Freney, E. ;
Hildebrandt Ruiz, L. ;
Hillamo, R. ;
Jimenez, J. L. ;
Junninen, H. ;
Kiendler-Scharr, A. ;
Kortelainen, A. -M. ;
Kulmala, M. ;
Laaksonen, A. ;
Mensah, A. ;
Mohr, C. ;
Nemitz, E. ;
O'Dowd, C. ;
Ovadnevaite, J. ;
Pandis, S. N. ;
Petaja, T. ;
Poulain, L. ;
Saarikoski, S. ;
Sellegri, K. ;
Swietlicki, E. ;
Tiitta, P. ;
Worsnop, D. R. ;
Baltensperger, U. ;
Prevot, A. S. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (12) :6159-6176
[3]   Deep learning of aftershock patterns following large earthquakes [J].
DeVries, Phoebe M. R. ;
Viegas, Fernanda ;
Wattenberg, Martin ;
Meade, Brendan J. .
NATURE, 2018, 560 (7720) :632-+
[4]   A working guide to boosted regression trees [J].
Elith, J. ;
Leathwick, J. R. ;
Hastie, T. .
JOURNAL OF ANIMAL ECOLOGY, 2008, 77 (04) :802-813
[5]   Random forests: from early developments to recent advancements [J].
Fawagreh, Khaled ;
Gaber, Mohamed Medhat ;
Elyan, Eyad .
SYSTEMS SCIENCE & CONTROL ENGINEERING, 2014, 2 (01) :602-609
[6]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[7]   Secondary organic aerosol (SOA) yields from NO3 radical + isoprene based on nighttime aircraft power plant plume transects [J].
Fry, Juliane L. ;
Brown, Steven S. ;
Middlebrook, Ann M. ;
Edwards, Peter M. ;
Campuzano-Jost, Pedro ;
Day, Douglas A. ;
Jimenez, Jose L. ;
Allen, Hannah M. ;
Ryerson, Thomas B. ;
Pollack, Ilana ;
Graus, Martin ;
Warneke, Carsten ;
de Gouw, Joost A. ;
Brock, Charles A. ;
Gilman, Jessica ;
Lerner, Brian M. ;
Dube, William P. ;
Liao, Jin ;
Welti, Andre .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (16) :11663-11682
[8]   Using meteorological normalisation to detect interventions in air quality time series [J].
Grange, Stuart K. ;
Carslaw, David C. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 653 :578-588
[9]   Random forest meteorological normalisation models for Swiss PM10 trend analysis [J].
Grange, Stuart K. ;
Carslaw, David C. ;
Lewis, Alastair C. ;
Boleti, Eirini ;
Hueglin, Christoph .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (09) :6223-6239
[10]  
Hsieh W.W., 2009, MACHINE LEARNING MET, DOI DOI 10.1017/CBO9780511627217