NiMoFe and NiMoFeP as Complementary Electrocatalysts for Efficient Overall Water Splitting and Their Application in PV-Electrolysis with STH 12.3%

被引:61
作者
Baek, Minki [1 ]
Kim, Guan-Woo [2 ]
Park, Taiho [2 ]
Yong, Kijung [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Surface Chem Lab Elect Mat, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Polymer Chem & Elect Lab, Cheongam Ro 77, Pohang 37673, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
electrocatalysts; hydrogen evolution reaction; overall water splitting; oxygen evolution reaction; OXYGEN EVOLUTION REACTION; NANOSTRUCTURED NICKEL PHOSPHIDE; HYDROGEN-EVOLUTION; BIFUNCTIONAL ELECTROCATALYST; ALKALINE-SOLUTION; HIGHLY EFFICIENT; NI; OXIDATION; ACID; PHOTOANODE;
D O I
10.1002/smll.201905501
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Complementary water splitting electrocatalysts used simultaneously in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can simplify water splitting systems. Herein, earth-abundant NiMoFe (NMF) and phosphorized NiMoFeP (NMFP) are synthesized as complementary overall water splitting (OWS) catalysts. First, NMF is tested as both the HER and OER promoter, which exhibits low overpotentials of 68 (HER) and 337 mV (OER). A quaternary NMFP is then prepared by simple phosphorization of NMF, which shows a much lower OER overpotential of 286 mV. The enhanced OER activity is attributed to the unique surface/core structure of NMFP. The surface phosphate acts as a proton transport mediator and expedites the rate-determining step. With the application of OER potential, the NMFP surface is composed of Ni(OH)(2) and FeOOH, active sites for OER, but the inner core consists of Ni, Mo, and Fe metals, serving as a conductive electron pathway. OWS with NMF-NMFP requires an applied voltage of 1.452 V to generate 10 mA cm(-2), which is one of the lowest values among OWS results with transition-metal-based electrocatalysts. Furthermore, the catalysts are combined with tandem perovskite solar cells for photovoltaic (PV)-electrolysis, producing a high solar-to-hydrogen (STH) conversion efficiency of 12.3%.
引用
收藏
页数:11
相关论文
共 52 条
[1]   BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell [J].
Baek, Ji Hyun ;
Kim, Byeong Jo ;
Han, Gill Sang ;
Hwang, Sung Won ;
Kim, Dong Rip ;
Cho, In Sun ;
Jung, Hyun Suk .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1479-1487
[2]   Highly efficient photoelectrochemical water splitting by a hybrid tandem perovskite solar cell [J].
Bin, Abd. Rashid ;
Yusoff, Mohd ;
Jang, Jin .
CHEMICAL COMMUNICATIONS, 2016, 52 (34) :5824-5827
[3]   PREPARATION AND CHARACTERIZATION OF LOW OVERVOLTAGE TRANSITION-METAL ALLOY ELECTROCATALYSTS FOR HYDROGEN EVOLUTION IN ALKALINE-SOLUTIONS [J].
BROWN, DE ;
MAHMOOD, MN ;
MAN, MCM ;
TURNER, AK .
ELECTROCHIMICA ACTA, 1984, 29 (11) :1551-1556
[5]   Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction [J].
Diaz-Morales, Oscar ;
Ledezma-Yanez, Isis ;
Koper, Marc T. M. ;
Calle-Vallejo, Federico .
ACS CATALYSIS, 2015, 5 (09) :5380-5387
[6]   STUDY OF ELECTRODEPOSITED NICKEL-MOLYBDENUM, NICKEL-TUNGSTEN, COBALT-MOLYBDENUM, AND COBALT-TUNGSTEN AS HYDROGEN ELECTRODES IN ALKALINE WATER ELECTROLYSIS [J].
FAN, CL ;
PIRON, DL ;
SLEB, A ;
PARADIS, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (02) :382-387
[7]   Hydrogen evolution reaction in alkaline solution - Catalytic influence of Pt supported on graphite vs Pt inclusions in graphite [J].
Fournier, J ;
Brossard, L ;
Tilquin, JY ;
Cote, R ;
Dodelet, JP ;
Guay, D ;
Menard, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) :919-926
[8]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313
[9]   Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts [J].
Goerlin, Mikaela ;
Chernev, Petko ;
de Araujo, Jorge Ferreira ;
Reier, Tobias ;
Dresp, Soeren ;
Paul, Benjamin ;
Kraehnert, Ralph ;
Dau, Holger ;
Strasser, Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (17) :5603-5614
[10]   A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction [J].
Gong, Ming ;
Wang, Di-Yan ;
Chen, Chia-Chun ;
Hwang, Bing-Joe ;
Dai, Hongjie .
NANO RESEARCH, 2016, 9 (01) :28-46