Combined Action of Mechanical Pre-Cracks and ASR Strain in Concrete

被引:4
作者
Alaud, Salhin [1 ,2 ]
van Zijl, Gideon P. A. G. [2 ]
机构
[1] Elmergib Univ, Dept Civil Engn, Garaboulli, Libya
[2] Stellenbosch Univ, Div Struct Engn, Stellenbosch, South Africa
关键词
ALKALI-SILICA REACTION; DURABILITY; EXPANSION; BEHAVIOR;
D O I
10.3151/jact.15.151
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An experimental study was undertaken to investigate aspects of durability of reinforced concrete elements subjected to the combined action of mechanical pre-cracking and alkali-silica reaction (ASR). Concrete beams with a high alkali content were pre-cracked in cyclic loading and subsequently submerged partially in water, or exposed to high humidity according to ASTM C1293-07 conditions (long-term method). Aggregates of relatively high, and aggregates of low reactivity were used. Reference beams with both reactive and less reactive aggregate were placed in the ASR chambers to compare the responses of specimens exposed to the combined action and specimens subjected to the ASR action only. The crack widths were monitored in pre-cracked specimens under both conditions (humidity, partially submerged). The test results indicate that the expansion due to the combined action at the middle of samples (mechanical crack zone) was significantly different in specimens exposed only to a high alkaline environment. The micro and macro cracks, induced by cyclic load, form ingress paths leading to increased ASR rate, while the macro-mechanical cracks provide regions of relatively free expansion, as deduced from decreasing crack widths.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 19 条
[1]   The effect of alkali-silica reaction on the fatigue behaviour of plain concrete tested in compression, indirect tension and flexure [J].
Ahmed, TMA ;
Burley, E ;
Rigden, SR .
MAGAZINE OF CONCRETE RESEARCH, 1999, 51 (06) :375-390
[2]  
[Anonymous], 2007, STANDARD TEST METHOD
[3]  
[Anonymous], 2008, ANN BOOK ASTM STAND
[4]  
Bangert F., 2001, COUPLED HYGRO CHEMOM
[5]   Mathematical model for kinetics of alkali-silica reaction in concrete [J].
Bazant, ZP ;
Steffens, A .
CEMENT AND CONCRETE RESEARCH, 2000, 30 (03) :419-428
[6]   A computational linear elastic fracture mechanics-based model for alkali-silica reaction [J].
Charpin, Laurent ;
Ehrlacher, Alain .
CEMENT AND CONCRETE RESEARCH, 2012, 42 (04) :613-625
[7]  
Croce P., 2010, EUROCODES BACKGROUND
[8]  
Davis D., 1989, PROPERTIES AGGREGATE
[9]  
Davis D., 1991, ALKALI AGGREGATE REA
[10]  
Fan SF, 1998, ACI STRUCT J, V95, P498