Remark on hyperstability of the general linear equation

被引:57
作者
Piszczek, Magdalena [1 ]
机构
[1] Pedag Univ, Inst Math, PL-30084 Krakow, Poland
关键词
Hyperstability; general linear equation; STABILITY;
D O I
10.1007/s00010-013-0214-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a result concerning the hyperstability of the general linear equation. Namely, we show that a function satisfying the equation approximately must be actually a solution to it.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 17 条
[1]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[2]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[3]  
Badea C., 2005, NONLINEAR FUNCT ANAL, V10, P155
[5]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[6]   A fixed point approach to stability of functional equations [J].
Brzdek, Janusz ;
Chudziak, Jacek ;
Pales, Zsolt .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6728-6732
[7]   A note on stability of the general linear equation [J].
Brzdek, Janusz ;
Pietrzyk, Andrzej .
AEQUATIONES MATHEMATICAE, 2008, 75 (03) :267-270
[8]  
Gajda Z., 1991, Internat. J. Math. Math. Sci., V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]
[9]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[10]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224