Optimal Estimation of Wavelet Decomposition Level for a Matching Pursuit Algorithm

被引:22
作者
Kaplun, Dmitry [1 ]
Voznesenskiy, Alexander [1 ]
Romanov, Sergei [1 ]
Nepomuceno, Erivelton [2 ]
Butusov, Denis [3 ]
机构
[1] St Petersburg Electrotech Univ LETI, Dept Automat & Control Proc, St Petersburg 197376, Russia
[2] Univ Fed Sao Joao del Rei, Control & Modelling Grp GCOM, Dept Elect Engn, BR-36307352 Sao Joao Del Rei, MG, Brazil
[3] St Petersburg Electrotech Univ LETI, Youth Res Inst, St Petersburg 197376, Russia
基金
俄罗斯科学基金会;
关键词
wavelet transform; digital signal processing; spectral analysis; matching pursuit algorithm; decomposition level;
D O I
10.3390/e21090843
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the application of the matching pursuit algorithm (MPA) for spectral analysis of non-stationary signals. First, we estimate the approximation error and the performance time for various MPA modifications and parameters using central processor unit and graphics processing unit (GPU) to identify possible ways to improve the algorithm. Next, we propose the modifications of discrete wavelet transform (DWT) and package wavelet decomposition (PWD) for further use in MPA. We explicitly show that the optimal decomposition level, defined as a level with minimum entropy, in DWT and PWD provides the minimum approximation error and the smallest execution time when applied in MPA as a rough estimate in the case of using wavelets as basis functions (atoms). We provide an example of entropy-based estimation for optimal decomposition level in spectral analysis of seismic signals. The proposed modification of the algorithm significantly reduces its computational costs. Results of spectral analysis obtained with MPA can be used for various signal processing applications, including denoising, clustering, classification, and parameter estimation.
引用
收藏
页数:16
相关论文
共 21 条
[1]  
[Anonymous], Documentation
[2]  
Cherif LH, 2016, INT J INNOV COMPUT I, V12, P215
[3]   ENTROPY-BASED ALGORITHMS FOR BEST BASIS SELECTION [J].
COIFMAN, RR ;
WICKERHAUSER, MV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :713-718
[4]  
Crochiere R.E., 1983, Multirate Digital Signal Processing
[5]  
DONOHO DL, 1994, CR ACAD SCI I-MATH, V319, P1317
[6]  
Goodwin M, 1997, INT CONF ACOUST SPEE, P2037, DOI 10.1109/ICASSP.1997.599345
[7]  
Goodwin M., 1997, P WORKSH APPL SIGN P
[8]  
Goodwin M.M., 1998, ADAPTIVE SIGNAL MODE
[9]   Matching pursuit and atomic signal models based on recursive filter banks [J].
Goodwin, MM ;
Vetterli, M .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (07) :1890-1902
[10]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995