A Novel Fast Clustering Algorithm

被引:5
作者
Li Xia [1 ]
Jiang Sheng-yi [1 ]
Su Xiao-ke [2 ]
机构
[1] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou 510006, Guangdong, Peoples R China
[2] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
来源
2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL IV, PROCEEDINGS | 2009年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/AICI.2009.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
SNN is a shared nearest neighbor based clustering algorithm. It is improved to process the data with categorical attributes and be given a simple and definite method to select threshold of the algorithm. By combine one-pass clustering algorithm with the enhanced SNN clustering algorithm, we present a fast clustering algorithm which can find different sizes, shapes and densities in noisy, high dimensional and large dataset. The time complexity of the presented clustering algorithm is nearly linear with the size of dataset. The experimental results on real datasets and synthetic datasets show that the clustering algorithm is effective, robust and practicable.
引用
收藏
页码:284 / +
页数:2
相关论文
共 7 条
[1]  
Ertoz L., 2002, 2 SIAM INT C DAT MIN
[2]  
GENG J, 2006, J UEST CHINA, V35
[3]   ROCK: A robust clustering algorithm for categorical attributes [J].
Guha, S ;
Rastogi, R ;
Shim, K .
15TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 1999, :512-521
[4]   Squeezer: An efficient algorithm for clustering categorical data [J].
He, ZY ;
Xu, XF ;
Deng, SC .
JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2002, 17 (05) :611-624
[5]  
Jiang SY, 2004, PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, P1513
[6]  
LIU MJ, 2006, COMPUTER APPL, V26
[7]  
MERZ CJ, 2000, UCI REPOSITORY MACHI