Quench Dynamics of Collective Modes in Fractional Quantum Hall Bilayers

被引:20
作者
Liu, Zhao [1 ]
Balram, Ajit C. [2 ]
Papic, Zlatko [3 ]
Gromov, Andrey [4 ,5 ]
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[2] HBNI, Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[3] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[4] Brown Univ, Brown Theoret Phys Ctr, 182 Hope St, Providence, RI 02912 USA
[5] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
COMPOSITE FERMIONS; EXCITATIONS; STATES; MAGNETOROTONS; FLUID; GAP;
D O I
10.1103/PhysRevLett.126.076604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce different types of quenches to probe the nonequilibrium dynamics and multiple collective modes of bilayer fractional quantum Hall states. We show that applying an electric field in one layer induces oscillations of a spin-1 degree of freedom, whose frequency matches the long-wavelength limit of the dipole mode. On the other hand, oscillations of the long-wavelength limit of the quadrupole mode, i.e., the spin-2 graviton, as well as the combination of two spin-1 states, can be activated by a sudden change of band mass anisotropy. We construct an effective field theory to describe the quench dynamics of these collective modes. In particular, we derive the dynamics for both the spin-2 and the spin-1 states and demonstrate their excellent agreement with numerics.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Edge modes in the fractional quantum Hall effect without extra edge fermions
    Lima, G. L. S.
    Dias, S. A.
    EPL, 2011, 94 (03)
  • [42] Magnetic-Field-Dependent Equilibration of Fractional Quantum Hall Edge Modes
    Maiti, Tanmay
    Agarwal, Pooja
    Purkait, Suvankar
    Sreejith, G. J.
    Das, Sourin
    Biasiol, Giorgio
    Sorba, Lucia
    Karmakar, Biswajit
    PHYSICAL REVIEW LETTERS, 2020, 125 (07)
  • [43] FRACTIONAL QUANTUM HALL STATES WITH NEGATIVE FLUX: EDGE MODES IN SOME ABELIAN AND NO-ABELIAN CASES
    Milovanovic, M. V.
    Jolicoeur, Th.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (05): : 549 - 566
  • [44] Geometrical Description of the Fractional Quantum Hall Effect
    Haldane, F. D. M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (11)
  • [45] Fractional Charges on an Integer Quantum Hall Edge
    Berg, E.
    Oreg, Y.
    Kim, E.-A.
    von Oppen, F.
    PHYSICAL REVIEW LETTERS, 2009, 102 (23)
  • [46] Bimetric Theory of Fractional Quantum Hall States
    Gromov, Andrey
    Son, Dam Thanh
    PHYSICAL REVIEW X, 2017, 7 (04):
  • [47] Crystallization of levitons in the fractional quantum Hall regime
    Ronetti, Flavio
    Vannucci, Luca
    Ferraro, Dario
    Jonckheere, Thibaut
    Rech, Jerome
    Martin, Thierry
    Sassetti, Maura
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [48] Dynamics of the fractional quantum Hall edge probed by stroboscope measurements of trions
    Kamiyama, Akinori
    Matsuura, Masahiro
    Moore, John N.
    Mano, Takaaki
    Shibata, Naokazu
    Yusa, Go
    APPLIED PHYSICS LETTERS, 2023, 122 (20)
  • [49] SU(N) fractional quantum Hall effect in topological flat bands
    Zeng, Tian-Sheng
    Sheng, D. N.
    PHYSICAL REVIEW B, 2018, 97 (03)
  • [50] Broken SU(4) Symmetry and the Fractional Quantum Hall Effect in Graphene
    Sodemann, I.
    MacDonald, A. H.
    PHYSICAL REVIEW LETTERS, 2014, 112 (12)