Latent Class Mixture Models of Treatment Effect Heterogeneity

被引:10
作者
Shahn, Zach [1 ]
Madigan, David [2 ]
机构
[1] Harvard Sch Publ Hlth, Boston, MA 02115 USA
[2] Columbia Univ, New York, NY 10027 USA
来源
BAYESIAN ANALYSIS | 2017年 / 12卷 / 03期
关键词
treatment effect heterogeneity; subgroup analysis; causal inference; latent class mixture model; INDIVIDUALIZED TREATMENT RULES; SUBGROUP ANALYSIS; IDENTIFICATION;
D O I
10.1214/16-BA1022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a general Bayesian framework for modeling treatment effect heterogeneity in experiments with non-categorical outcomes. Our modeling approach incorporates latent class mixture components to capture discrete heterogeneity and regression interaction terms to capture continuous heterogeneity. Flexible error distributions allow robust posterior inference on parameters of interest. Hierarchical shrinkage priors on relevant parameters address multiple comparisons concerns. Leave-one-out cross validation estimates of expected posterior predictive density obtained through importance sampling, together with posterior predictive checks, provide a convenient method for model selection and evaluation. We apply our approach to a clinical trial comparing two HIV treatments and to an instrumental variable analysis of a natural experiment on the effect of Medicaid enrollment on emergency department utilization.
引用
收藏
页码:831 / 854
页数:24
相关论文
共 28 条
[1]  
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
[2]  
[Anonymous], 2015, ARXIV150401132
[3]   Accept-reject Metropolis-Hastings sampling and marginal likelihood estimation [J].
Chib, S ;
Jeliazkov, I .
STATISTICA NEERLANDICA, 2005, 59 (01) :30-44
[4]   Analysis of treatment response data without the joint distribution of potential outcomes [J].
Chib, Siddhartha .
JOURNAL OF ECONOMETRICS, 2007, 140 (02) :401-412
[5]   Theory and applications of proper scoring rules [J].
Dawid A.P. ;
Musio M. .
METRON, 2014, 72 (2) :169-183
[6]   Subgroup identification from randomized clinical trial data [J].
Foster, Jared C. ;
Taylor, Jeremy M. G. ;
Ruberg, Stephen J. .
STATISTICS IN MEDICINE, 2011, 30 (24) :2867-2880
[7]   Principal stratification in causal inference [J].
Frangakis, CE ;
Rubin, DB .
BIOMETRICS, 2002, 58 (01) :21-29
[8]  
Gelfand A.E., 1996, MARKOV CHAIN MONTE C, P145, DOI DOI 10.1201/B14835
[9]  
Gelman A, 1996, STAT SINICA, V6, P733
[10]   Why We (Usually) Don't Have to Worry About Multiple Comparisons [J].
Gelman, Andrew ;
Hill, Jennifer ;
Yajima, Masanao .
JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS, 2012, 5 (02) :189-211