Simplified radiative transfer for combined Rayleigh and isotropic scattering

被引:1
作者
Pomraning, GC [1 ]
Ganapol, BD
机构
[1] Univ Calif Los Angeles, Sch Engn & Appl Sci, Los Angeles, CA 90095 USA
[2] Univ Arizona, Dept Aerosp & Mech Engn, Tucson, AZ 85721 USA
关键词
polarization; radiative transfer; scattering;
D O I
10.1086/305582
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the vector equation of radiative transfer describing the Stokes parameters of light, with a scattering law corresponding to a combination of Rayleigh and isotropic scattering. We show that this vector description can be reduced to a renormalized scaler equation of transfer for the intensity I in the asymptotic limit of either near-thermodynamic equilibrium or that corresponding to a source-free, weakly absorbing system. A simple quadrature result is also obtained for the state of polarization of the light. We apply this analysis to the classic diffuse reflection problem, and numerical results indicate an improvement in accuracy over the usual scalar equations of transfer predictions for this scattering law. As part of our solution methodology for the diffuse reflection problem, we introduce a new analytic technique based upon the source function in the equation of transfer.
引用
收藏
页码:671 / 688
页数:18
相关论文
共 10 条
[1]   NONCONSERVATIVE EQUATION OF TRANSFER FOR A COMBINATION OF RAYLEIGH AND ISOTROPIC SCATTERING [J].
BOND, GR ;
SIEWERT, CE .
ASTROPHYSICAL JOURNAL, 1971, 164 (01) :97-&
[2]  
Busbridge L.W., 1960, The Mathematics of Radiative Transfer
[3]  
CASE KM, 1967, LINEAR TRANSPORT THE
[4]   ON THE RADIATIVE EQUILIBRIUM OF A STELLAR ATMOSPHERE .10. [J].
CHANDRASEKHAR, S .
ASTROPHYSICAL JOURNAL, 1946, 103 (03) :351-370
[5]  
Chandrasekhar S, 1950, RAD TRANSFER
[6]  
Ganapol B. D., 1997, Transport Theory and Statistical Physics, V26, P507, DOI 10.1080/00411459708017927
[7]  
POMRANING GC, 1969, IN PRESS J QUANT SPE, V2, P419
[8]  
RAYLEIGH, 1871, PHIL MAG, V41, P274
[9]  
RAYLEIGH, 1871, PHILOS MAG, V41, P447
[10]  
Strutt H. J., 1871, Lond. Edinb. Dublin Philos. Mag. J. Sci, V41, P107, DOI 10.1080/14786447108640452