Stereo Digital Image Correlation in MATLAB

被引:16
作者
Atkinson, Devan [1 ]
Becker, Thorsten Hermann [1 ]
机构
[1] Stellenbosch Univ, Dept Mech & Mechatron Engn, Corner Banghoek & Joubert St, ZA-7599 Stellenbosch, Western Cape, South Africa
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 11期
关键词
digital image correlation; stereo; subset-based; education; MATLAB code; three-dimensional; DEFORMATION MEASUREMENTS; ACCURATE MEASUREMENT; CORRELATION CRITERIA; CAMERA CALIBRATION; SYSTEMATIC-ERRORS; STRAIN; 2D; DISPLACEMENTS; INTERPOLATION; EFFICIENCY;
D O I
10.3390/app11114904
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Digital Image Correlation (DIC) has found widespread use in measuring full-field displacements and deformations experienced by a body from images captured of it. Stereo-DIC has received significantly more attention than two-dimensional (2D) DIC since it can account for out-of-plane displacements. Although many aspects of Stereo-DIC that are shared in common with 2D DIC are well documented, there is a lack of resources that cover the theory of Stereo-DIC. Furthermore, publications which do detail aspects of the theory do not detail its implementation in practice. This literature gap makes it difficult for newcomers to the field of DIC to gain a deep understanding of the Stereo-DIC process, although this knowledge is necessary to contribute to the development of the field by either furthering its capabilities or adapting it for novel applications. This gap in literature acts as a barrier thereby limiting the development rate of Stereo-DIC. This paper attempts to address this by presenting the theory of a subset-based Stereo-DIC framework that is predominantly consistent with the current state-of-the-art. The framework is implemented in practice as a 202 line MATLAB code. Validation of the framework shows that it performs on par with well-established Stereo-DIC algorithms, indicating it is sufficiently reliable for practical use. Although the framework is designed to serve as an educational resource, its modularity and validation make it attractive as a means to further the capabilities of DIC.
引用
收藏
页数:42
相关论文
共 86 条
[1]   A 117 Line 2D Digital Image Correlation Code Written in MATLAB [J].
Atkinson, Devan ;
Becker, Thorsten .
REMOTE SENSING, 2020, 12 (18)
[2]   Lucas-Kanade 20 years on: A unifying framework [J].
Baker, S ;
Matthews, I .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) :221-255
[3]   Stereo-DIC Uncertainty Quantification based on Simulated Images [J].
Balcaen, R. ;
Reu, P. L. ;
Lava, P. ;
Debruyne, D. .
EXPERIMENTAL MECHANICS, 2017, 57 (06) :939-951
[4]   Stereo-DIC Calibration and Speckle Image Generator Based on FE Formulations [J].
Balcaen, R. ;
Wittevrongel, L. ;
Reu, P. L. ;
Lava, P. ;
Debruyne, D. .
EXPERIMENTAL MECHANICS, 2017, 57 (05) :703-718
[5]   Digital volume correlation: Three-dimensional strain mapping using X-ray tomography [J].
Bay, BK ;
Smith, TS ;
Fyhrie, DP ;
Saad, M .
EXPERIMENTAL MECHANICS, 1999, 39 (03) :217-226
[6]   High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations [J].
Beberniss, Timothy J. ;
Ehrhardt, David A. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 86 :35-48
[7]   Quantitative Assessment of Digital Image Correlation Methods to Detect and Monitor Surface Displacements of Large Slope Instabilities [J].
Bickel, Valentin Tertius ;
Manconi, Andrea ;
Amann, Florian .
REMOTE SENSING, 2018, 10 (06)
[8]  
Bigger R., 2018, A Good Practices Guide for Digital Image Correlation, DOI [10.32720/idics/gpg.ed1, DOI 10.32720/IDICS/GPG.ED1]
[9]   Ncorr: Open-Source 2D Digital Image Correlation Matlab Software [J].
Blaber, J. ;
Adair, B. ;
Antoniou, A. .
EXPERIMENTAL MECHANICS, 2015, 55 (06) :1105-1122
[10]   HOMOGENEOUS COORDINATES [J].
BLOOMENTHAL, J ;
ROKNE, J .
VISUAL COMPUTER, 1994, 11 (01) :15-26