Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions

被引:75
作者
Toropova, Alla P. [1 ]
Toropov, Andrey A. [1 ]
Rallo, Robert [2 ]
Leszczynska, Danuta [3 ]
Leszczynski, Jerzy [4 ]
机构
[1] IRCCS, Ist Ric Farmacol Mario Negri, I-20156 Milan, Italy
[2] Univ Rovira & Virgili, Dept Engn Informat & Matemat, E-43007 Tarragona, Catalunya, Spain
[3] Jackson State Univ, Interdisciplinary Nanotox Ctr, Dept Civil & Environm Engn, Jackson, MS 39217 USA
[4] Jackson State Univ, Interdisciplinary Nanotox Ctr, Dept Chem & Biochem, Jackson, MS 39217 USA
基金
美国国家科学基金会;
关键词
QSAR; Quasi-SMILES; Quasi-QSAR; Nano-QSAR; Monte Carlo method; Cytotoxicity; Metal oxide nanoparticle; HIV-1 PR INHIBITORS; QUANTITATIVE STRUCTURE; THERMAL-CONDUCTIVITY; CORAL SOFTWARE; QSAR ANALYSIS; SMILES; MODEL; INFORMATION; NANOMATERIALS; FULLERENE;
D O I
10.1016/j.ecoenv.2014.10.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Monte Carlo technique has been used to build up quantitative structure-activity relationships (QSARs) for prediction of dark cytotoxicity and photo-induced cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli (minus logarithm of lethal concentration for 50% bacteria pLC50, LC50 in mol/L). The representation of nanoparticles include (i) in the case of the dark cytotoxicity a simplified molecular input-line entry system (SMILES), and (ii) in the case of photo-induced cytotoxicity a SMILES plus symbol The predictability of the approach is checked up with six random distributions of available data into the visible training and calibration sets, and invisible validation set. The statistical characteristics of these models are correlation coefficient 0.90-0.94 (training set) and 0.73-0.98 (validation set). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 40 条
  • [1] Ligand - based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and Counterpropagation Artificial Neural Networks
    Afantitis, Antreas
    Melagraki, Georgia
    Koutentis, Panayiotis A.
    Sarimveis, Haralambos
    Kollias, George
    [J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2011, 46 (02) : 497 - 508
  • [2] Study on supramolecular complexing ability vis-a-vis estimation of pKa of substituted sulfonamides:: Dominating role of Balaban index (J)
    Balaban, AT
    Khadikar, PV
    Supuran, CT
    Thakur, A
    Thakur, M
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2005, 15 (17) : 3966 - 3973
  • [3] Are Mechanistic and Statistical QSAR Approaches Really Different? MLR Studies on 158 Cycloalkyl-Pyranones
    Bhhatarai, Barun
    Garg, Rajni
    Gramatica, Paola
    [J]. MOLECULAR INFORMATICS, 2010, 29 (6-7) : 511 - 522
  • [4] In Silico Analysis of Nanomaterials Hazard and Risk
    Cohen, Yoram
    Rallo, Robert
    Liu, Rong
    Liu, Haoyang Haven
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (03) : 802 - 812
  • [5] A combined use of global and local approaches in 3D-QSAR
    Cosentino, U
    Moro, G
    Bonalumi, D
    Bonati, L
    Lasagni, M
    Todeschini, R
    Pitea, D
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2000, 52 (02) : 183 - 194
  • [6] Comparison between first geometric-arithmetic index and atom-bond connectivity index
    Das, Kinkar Ch.
    Trinajstic, N.
    [J]. CHEMICAL PHYSICS LETTERS, 2010, 497 (1-3) : 149 - 151
  • [7] Quantitative structure-spectral property relationships for functional groups of novel 1,2,5-thiadiazole compounds
    Duchowicz, Pablo R.
    Mirifico, Maria V.
    Rozas, Maria F.
    Caram, Jose A.
    Fernandez, Francisco M.
    Castro, Eduardo A.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 105 (01) : 27 - 37
  • [8] Quantitative Nanostructure-Activity Relationship Modeling
    Fourches, Denis
    Pu, Dongqiuye
    Tassa, Carlos
    Weissleder, Ralph
    Shaw, Stanley Y.
    Mumper, Russell J.
    Tropsha, Alexander
    [J]. ACS NANO, 2010, 4 (10) : 5703 - 5712
  • [9] Relation between second and third geometric-arithmetic indices of trees
    Furtula, Boris
    Gutman, Ivan
    [J]. JOURNAL OF CHEMOMETRICS, 2011, 25 (02) : 87 - 91
  • [10] Beware of q2!
    Golbraikh, A
    Tropsha, A
    [J]. JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2002, 20 (04) : 269 - 276