Enhanced performance of solar cell with n+ emitter by SiO2 nanospheres assisted liquid phosphorus diffusion

被引:3
作者
Lai, Binkang [1 ]
Shen, Honglie [1 ]
Hu, Dongli [2 ]
Gu, Hao [1 ]
Huo, Xiaomin [1 ]
Xu, Yajun [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangsu Prov Key Lab Mat & Technol Energy Convers, 29 Jiangjun Ave, Nanjing 211106, Peoples R China
[2] Jiangsu GCL Silicon Mat Technol Dev Co Ltd, Key Lab Silicon Based Elect Mat Jiangsu Prov, 88 Yangshan Rd, Xuzhou 221000, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
N+ emitter; Spin-on doping; SiO2; nanospheres; Diffusion uniformity; sheet resistance; POCL3; DIFFUSION; SILICON;
D O I
10.1016/j.solener.2021.05.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to improve the quality of n(+) emitter fabricated by phosphorus doping, SiO2 nanospheres were added into a phosphoric acid solution for spin-on doping. Through a complete analysis of the trade-off between the diffusion uniformity and sheet resistance, the particle size of SiO2 nanospheres is selected to be 230 nm. It is found that with the increase of phosphoric acid concentration from 50% to 85%, the average sheet resistance decreases from 128.5 Omega/sq to 18.1 Tau/sq, and the diffusion uniformity increased from 95.2% to 98.5%. In a large concentration range, the surface doping concentration of the emitter will increase with phosphoric acid, but when the concentration of phosphoric acid reaches 80%, the surface doping concentration will be almost unchanged. Nevertheless, different from above, the p-n junction depth has little dependence on the phosphoric acid concentration. Moreover, the efficiencies in the solar cell center and edge are enhanced by 40.54% and 88.08% respectively using SiO2 nanospheres assisted diffusion.
引用
收藏
页码:230 / 234
页数:5
相关论文
共 24 条
[1]   In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation [J].
Ahmad, Samir Mahmmod ;
Cheow, Siu Leong ;
Ludin, Norasikin A. ;
Sopian, K. ;
Zaidi, Saleem H. .
RESULTS IN PHYSICS, 2017, 7 :2183-2193
[2]   Silicon solar cells: toward the efficiency limits [J].
Andreani, Lucio Claudio ;
Bozzola, Angelo ;
Kowalczewski, Piotr ;
Liscidini, Marco ;
Redorici, Lisa .
ADVANCES IN PHYSICS-X, 2019, 4 (01)
[3]   Effect of doping profile on sheet resistance and contact resistance of monocrystalline silicon solar cells [J].
Basher, M. K. ;
Uddin, M. Jalal ;
Hossain, M. Khalid ;
Akand, M. A. R. ;
Biswas, S. ;
Mia, M. N. H. ;
Shorowordi, K. M. .
MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
[4]   23.83% efficient mono-PERC incorporating advanced hydrogenation [J].
Chen, Ran ;
Tong, Hongbo ;
Zhu, Haitao ;
Ding, Chao ;
Li, Hua ;
Chen, Daniel ;
Hallam, Brett ;
Chong, Chee Mun ;
Wenham, Stuart ;
Ciesla, Alison .
PROGRESS IN PHOTOVOLTAICS, 2020, 28 (12) :1239-1247
[6]   Simulation of the Phosphorus profiles in a c-Si solar cell fabricated using POCl3 diffusion or ion implantation and annealing [J].
Florakis, Antonios ;
Janssens, Tom ;
Posthuma, Niels ;
Delmotte, Ions ;
Douhard, Bastien ;
Poortmans, Jef ;
Vandervorst, Wilfried .
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2013), 2013, 38 :263-269
[7]   Optimization of Phosphorus Emitter Formation from POCl3 Diffusion for p-Type Silicon Solar Cells Processing [J].
Ghembaza, H. ;
Zerga, A. ;
Saim, R. ;
Pasquinelli, M. .
SILICON, 2018, 10 (02) :377-386
[8]   Solar cells: past, present, future [J].
Goetzberger, A ;
Luther, J ;
Willeke, G .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2002, 74 (1-4) :1-11
[9]   Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies [J].
Hermle, Martin ;
Feldmann, Frank ;
Bivour, Martin ;
Goldschmidt, Jan Christoph ;
Glunz, Stefan W. .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[10]   Influence of thickness variation of gamma-irradiated DSSC photoanodic TiO2 film on structural, morphological and optical properties [J].
Hossain, M. Khalid ;
Rahman, M. T. ;
Basher, M. K. ;
Manir, M. S. ;
Bashar, M. S. .
OPTIK, 2019, 178 :449-460