Application of the exact quantization rule to the relativistic solution of the rotational Morse potential with pseudospin symmetry

被引:119
作者
Qiang, Wen-Chao [1 ]
Zhou, Run-Suo
Gao, Yang
机构
[1] Xian Univ Architecture & Technol, Fac Sci, Xian 710055, Peoples R China
[2] Fourth Mil Med Univ, TangDu Hosp, Dept Nucl Med, Xian 710038, Peoples R China
[3] Xian Microelect Technol Inst, Xian 710054, Peoples R China
关键词
D O I
10.1088/1751-8113/40/7/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analytical solution of the radial Dirac equation for the rotational Morse potential through the Pekeris approximation. The bound state energy eigenvalues are obtained by using an exact quantization rule for non-zero. values of the Dirac equation. As an application of the rule, we give the numerical solutions of the results for special values of the potential parameters.
引用
收藏
页码:1677 / 1685
页数:9
相关论文
共 18 条
[1]   Arbitrary l-state solutions of the rotating Morse potential by the asymptotic iteration method [J].
Bayrak, O. ;
Boztosun, I. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22) :6955-6963
[2]   Pseudospin symmetry in the relativistic Morse potential including the spin-orbit coupling term [J].
Berkdemir, C .
NUCLEAR PHYSICS A, 2006, 770 (1-2) :32-39
[3]   Any l-state solutions of the Morse potential through the Pekeris approximation and Nikiforov-Uvarov method [J].
Berkdemir, C ;
Han, HG .
CHEMICAL PHYSICS LETTERS, 2005, 409 (4-6) :203-207
[4]   Morse potential energy spectra through the variational method and supersymmetry [J].
Drigo, E ;
Ricotta, RM .
PHYSICS LETTERS A, 2000, 269 (5-6) :269-276
[5]   ACCURATE ANALYTIC APPROXIMATIONS FOR THE ROTATING MORSE OSCILLATOR - ENERGIES, WAVE-FUNCTIONS, AND MATRIX-ELEMENTS [J].
ELSUM, IR ;
GORDON, RG .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (11) :5452-5457
[6]   Quantization condition for bound and quasibound states [J].
Fernandez, FM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (12) :3167-3177
[7]  
Flugge S., 1994, PRACTICAL QUANTUM ME, V1
[8]   Pseudospin as a relativistic symmetry [J].
Ginocchio, JN .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :436-439
[9]   Pseudospin symmetry in the relativistic harmonic oscillator [J].
Guo, JY ;
Fang, XZ ;
Xu, FX .
NUCLEAR PHYSICS A, 2005, 757 (3-4) :411-421
[10]   Exact solution of the Dirac-Eckart problem with spin and pseudospin symmetry [J].
Jia, CS ;
Guo, P ;
Peng, XL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (24) :7737-7744