Linear output feedback with dynamic high gain for nonlinear systems

被引:380
作者
Praly, L
Jiang, ZP
机构
[1] Polytech Univ, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
[2] Ecole Mines Paris, Ctr Automat & Syst, F-77305 Fontainebleau, France
基金
美国国家科学基金会;
关键词
nonlinear systems; output feedback; global regulation; Lyapunov functions; input-to-state stability; small-gain;
D O I
10.1016/j.sysconle.2004.02.025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a linear output feedback with dynamic high gain for global regulation of a class of nonlinear systems. The uncertain nonlinearities are assumed to be bounded by a polynomial function of the output multiplied by unmeasured states. The crucial point made in this paper is that a linear observer-based output feedback can globally regulate an equilibrium of strongly nonlinear systems, provided that a single high gain is appropriately tuned. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 116
页数:10
相关论文
共 16 条
[1]   A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems [J].
Jiang, ZP ;
Mareels, IMY ;
Wang, Y .
AUTOMATICA, 1996, 32 (08) :1211-1215
[2]   Robust nonlinear integral control [J].
Jiang, ZP ;
Mareels, I .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (08) :1336-1342
[3]   SMALL-GAIN THEOREM FOR ISS SYSTEMS AND APPLICATIONS [J].
JIANG, ZP ;
TEEL, AR ;
PRALY, L .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1994, 7 (02) :95-120
[4]   ADAPTIVE STABILIZATION OF A CLASS OF NONLINEAR-SYSTEMS USING HIGH-GAIN FEEDBACK [J].
KHALIL, HK ;
SABERI, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (11) :1031-1035
[5]  
Krishamurthy P, 2002, IEEE DECIS CONTR P, P1503, DOI 10.1109/CDC.2002.1184732
[6]  
Kristic M., 1995, Nonlinear and Adaptive Control Design
[7]  
MARINO R, 1995, NONLINEAR CONTROL DE
[8]   GLOBAL STABILIZATION BY OUTPUT-FEEDBACK - EXAMPLES AND COUNTEREXAMPLES [J].
MAZENC, F ;
PRALY, L ;
DAYAWANSA, WP .
SYSTEMS & CONTROL LETTERS, 1994, 23 (02) :119-125
[9]   STABILIZATION BY OUTPUT-FEEDBACK FOR SYSTEMS WITH ISS INVERSE DYNAMICS [J].
PRALY, L ;
JIANG, ZP .
SYSTEMS & CONTROL LETTERS, 1993, 21 (01) :19-33
[10]   Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability [J].
Praly, L ;
Wang, Y .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1996, 9 (01) :1-33