Advances and Challenges for the Electrochemical Reduction of CO2 to CO: From Fundamentals to Industrialization

被引:721
作者
Jin, Song [1 ]
Hao, Zhimeng [1 ]
Zhang, Kai [1 ]
Yan, Zhenhua [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
catalyst design; carbon dioxide reduction reaction; carbon monoxide; electrochemistry; electrolysis; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE REDUCTION; HIGH-CURRENT DENSITY; SELECTIVE ELECTROCATALYTIC REDUCTION; PLUS METHANOL MEDIUM; HIGHLY EFFICIENT; IONIC LIQUIDS; MOLYBDENUM-DISULFIDE; HYDROGEN EVOLUTION; ENERGY-CONVERSION;
D O I
10.1002/anie.202101818
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical carbon dioxide reduction reaction (CO2RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2. To conclude, the remaining technological challenges and future directions for the industrial application of the CO2RR to generate CO are highlighted.
引用
收藏
页码:20627 / 20648
页数:22
相关论文
共 215 条
  • [11] [Anonymous], 2018, ANGEW CHEM, V130, P12483
  • [12] [Anonymous], 2013, ANGEW CHEM, V125, P13262
  • [13] [Anonymous], 2018, ANGEW CHEM, V130, P9788
  • [14] [Anonymous], 2020, ANGEW CHEM, V132, P1691
  • [15] [Anonymous], 2019, ANGEW CHEM, V131, P7046
  • [16] Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes
    Armstrong, Fraser A.
    Hirst, Judy
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (34) : 14049 - 14054
  • [17] Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid
    Asadi, Mohammad
    Kim, Kibum
    Liu, Cong
    Addepalli, Aditya Venkata
    Abbasi, Pedram
    Yasaei, Poya
    Phillips, Patrick
    Behranginia, Amirhossein
    Cerrato, Jose M.
    Haasch, Richard
    Zapol, Peter
    Kumar, Bijandra
    Klie, Robert F.
    Abiade, Jeremiah
    Curtiss, Larry A.
    Salehi-Khojin, Amin
    [J]. SCIENCE, 2016, 353 (6298) : 467 - 470
  • [18] Robust carbon dioxide reduction on molybdenum disulphide edges
    Asadi, Mohammad
    Kumar, Bijandra
    Behranginia, Amirhossein
    Rosen, Brian A.
    Baskin, Artem
    Repnin, Nikita
    Pisasale, Davide
    Phillips, Patrick
    Zhu, Wei
    Haasch, Richard
    Klie, Robert F.
    Kral, Petr
    Abiade, Jeremiah
    Salehi-Khojin, Amin
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [19] Spectroscopic Evidence of Size-Dependent Buffering of Interfacial pH by Cation Hydrolysis during CO2 Electroreduction
    Ayemoba, Onagie
    Cuesta, Angel
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (33) : 27377 - 27382
  • [20] Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO
    Back, Seoin
    Yeom, Min Sun
    Jung, Yousung
    [J]. ACS CATALYSIS, 2015, 5 (09): : 5089 - 5096