Approximate enumeration of self-avoiding walks

被引:0
|
作者
Janse van Rensburg, E. J. [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
来源
ALGORITHMIC PROBABILITY AND COMBINATORICS | 2010年 / 520卷
关键词
Self-avoiding walk; statistical mechanics; ENRICHED ROSENBLUTH METHOD; CRITICAL EXPONENT GAMMA; MONTE-CARLO ALGORITHMS; SIMULATIONS; POLYMERS; NUMBER; POLYGONS; LENGTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Algorithms for the approximate enumeration of lattice self-avoiding walks are reviewed. Innovations in the approximate counting of such walks started with the invention of PERM (the pruned enhanced Rosenbluth method) in 1997. The recent generalization of the underlying Rosenbluth method (RM) to the GARM (generalized atmospheric RM), and to the GAS (generalized atmospheric sampling) algorithm, opens up exciting new possibilities for the approximate enumeration of walks. The implementation and use of these algorithms are described, as are associated results, including numerical data that show that high-quality estimates of the number of walks can be obtained.
引用
收藏
页码:127 / +
页数:3
相关论文
共 50 条
  • [1] Enumeration of compact self-avoiding walks
    Jensen, I
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 142 (1-3) : 109 - 113
  • [2] Endless self-avoiding walks
    Clisby, Nathan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (23)
  • [3] Weighted self-avoiding walks
    Geoffrey R. Grimmett
    Zhongyang Li
    Journal of Algebraic Combinatorics, 2020, 52 : 77 - 102
  • [4] Self-avoiding walks and amenability
    Grimmett, Geoffrey R.
    Li, Zhongyang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04)
  • [5] Self-Avoiding Walks on the UIPQ
    Caraceni, Alessandra
    Curien, Nicolas
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 138 - 165
  • [6] SELF-AVOIDING CHIRAL WALKS
    Dutta, Sumana
    Steinbock, Oliver
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (11): : 3717 - 3723
  • [7] Weighted self-avoiding walks
    Grimmett, Geoffrey R.
    Li, Zhongyang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (01) : 77 - 102
  • [8] Extendable self-avoiding walks
    Grimmett, Geoffrey R.
    Holroyd, Alexander E.
    Peres, Yuval
    ANNALES DE L INSTITUT HENRI POINCARE D, 2014, 1 (01): : 61 - 75
  • [9] On the existence of critical exponents for self-avoiding walks
    Guttmannl, Anthony J.
    Jensen, Iwan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (41)
  • [10] Generalized atmospheric sampling of self-avoiding walks
    Janse van Rensburg, E. J.
    Rechnitzer, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (33)