Enhanced Thermoelectric Performance of Bi2Te2.7Se0.3/Bi2S3 Synthesized by Anion Exchange Method

被引:8
作者
Chen, Xi [1 ]
Cai, Fanggong [1 ]
Liu, Chuanrong [2 ]
Dong, Rong [1 ]
Qiu, Lanxin [1 ]
Jiang, Lili [1 ]
Yuan, Guocai [1 ]
Zhang, Qinyong [1 ,2 ]
机构
[1] Xihua Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Fluid & Power Machinery, Chengdu 610039, Sichuan, Peoples R China
[2] Xihua Univ, Xihua Honors Coll, Chengdu 610039, Sichuan, Peoples R China
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2020年 / 14卷 / 04期
基金
中国国家自然科学基金;
关键词
Bi2Te2.7Se0.3; Bi2Te2.7Se0.3/Bi2S3; heterostructures; thermal conductivity; thermoelectric materials; THERMAL-CONDUCTIVITY; PHONON-SCATTERING; NANOCOMPOSITES; CARRIER;
D O I
10.1002/pssr.201900679
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Decoupling the electric conductivity, Seebeck coefficient, and thermal conductivity is a core issue to improve the properties of thermoelectric materials by tuning the electron and phonon transport properties. Herein, Bi2Te2.7Se0.3/Bi2S3 heterostructure is successfully synthesized by a simple anion exchange method with Bi2Te2.7Se0.3 as the starting material. The Bi2Te2.7Se0.3/Bi2S3 heterointerfaces can achieve an effective phonon scattering and significant decrease in thermal conductivity, while maintaining a high power factor, resulting in an enhanced figure of merit (ZT). By controlling the concentration of Bi2Te2.7Se0.3/Bi2S3 heterointerfaces, the carrier-transporting and phonon-scattering behaviors can be simultaneously optimized. A maximum ZT of 0.7 is obtained at 473 K, which is 23% higher than that of pure Bi2Te2.7Se0.3. In addition, the average ZT at 300-548 K increases from 0.49 to 0.61, which is 25% higher than that of pure Bi2Te2.7Se0.3.
引用
收藏
页数:6
相关论文
共 24 条
[1]  
Cai F., 2020, J ALLOY COMPD, V819, P153384
[2]   Manipulation of Phonon Transport in Thermoelectrics [J].
Chen, Zhiwei ;
Zhang, Xinyue ;
Pei, Yanzhong .
ADVANCED MATERIALS, 2018, 30 (17)
[3]   High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C [J].
Hao, Feng ;
Qiu, Pengfei ;
Tang, Yunshan ;
Bai, Shengqiang ;
Xing, Tong ;
Chu, Hsu-Shen ;
Zhang, Qihao ;
Lu, Ping ;
Zhang, Tiansong ;
Ren, Dudi ;
Chen, Jikun ;
Shi, Xun ;
Chen, Lidong .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3120-3127
[4]   Advances in thermoelectric materials research: Looking back and moving forward [J].
He, Jian ;
Tritt, Terry M. .
SCIENCE, 2017, 357 (6358)
[5]   Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions [J].
Hu, Lipeng ;
Wu, Haijun ;
Zhu, Tiejun ;
Fu, Chenguang ;
He, Jiaqing ;
Ying, Pingjun ;
Zhao, Xinbing .
ADVANCED ENERGY MATERIALS, 2015, 5 (17)
[6]   Relationship between thermoelectric figure of merit and energy conversion efficiency [J].
Kim, Hee Seok ;
Liu, Weishu ;
Chen, Gang ;
Chua, Ching-Wu ;
Ren, Zhifeng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (27) :8205-8210
[7]   Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics [J].
Kim, Sang Il ;
Lee, Kyu Hyoung ;
Mun, Hyeon A. ;
Kim, Hyun Sik ;
Hwang, Sung Woo ;
Roh, Jong Wook ;
Yang, Dae Jin ;
Shin, Weon Ho ;
Li, Xiang Shu ;
Lee, Young Hee ;
Snyder, G. Jeffrey ;
Kim, Sung Wng .
SCIENCE, 2015, 348 (6230) :109-114
[8]   High thermoelectric performance of n-type Bi2Te2.7Se0.3via nanostructure engineering [J].
Li, D. ;
Li, J. M. ;
Li, J. C. ;
Wang, Y. S. ;
Zhang, J. ;
Qin, X. Y. ;
Cao, Y. ;
Li, Y. S. ;
Tang, G. D. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (20) :9642-9649
[9]   BiSbTe-Based Nanocomposites with High ZT : The Effect of SiC Nanodispersion on Thermoelectric Properties [J].
Li, Jianhui ;
Tan, Qing ;
Li, Jing-Feng ;
Liu, Da-Wei ;
Li, Fu ;
Li, Zong-Yue ;
Zou, Minmin ;
Wang, Ke .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (35) :4317-4323
[10]   Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach [J].
Li, Shuankui ;
Liu, Yidong ;
Liu, Fusheng ;
He, Dongsheng ;
He, Jiaqing ;
Luo, Jun ;
Xiao, Yinguo ;
Pan, Feng .
NANO ENERGY, 2018, 49 :257-266