Enhancement of a modified radix-2 Montgomery modular multiplication

被引:3
作者
Choi, Se-Hyu [1 ]
Lee, Keon-Jik [1 ]
机构
[1] Kyungpook Natl Univ, Sch Architectural Civil Environm & Energy Engn, Taegu 702701, South Korea
来源
IEICE ELECTRONICS EXPRESS | 2014年 / 11卷 / 19期
关键词
Montgomery; modular multiplication; radix-2; carry save adder; SYSTOLIC MULTIPLIER; EXPONENTIATION; ALGORITHM;
D O I
10.1587/elex.11.20140782
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, Manochehri et al. proposed a modified radix-2 Montgomery modular multiplication with a new recording method. In this letter, we present an improvement to their scheme that makes it simpler and faster. Manochehri et al.'s algorithm requires n + 2 iterations, whereas the proposed (non-pipelined) algorithm requires n + 2 iterations. Moreover, there is no need for post-processing to obtain the correct output, nor for a non-standard operation such as bitwise subtraction. The area/time complexity of our pipelined multiplier is reduced by approximately 24.36% compared to Manochehri et al.'s multiplier. The proposed architecture is simple, modular, and regular. Moreover, it exhibits low complexity and propagation delay. Accordingly, it is well suited for VLSI implementation.
引用
收藏
页数:5
相关论文
共 9 条
[1]   Linear systolic multiplier/squarer for fast exponentiation [J].
Lee, KJ ;
Yoo, KY .
INFORMATION PROCESSING LETTERS, 2000, 76 (03) :105-111
[2]   Digit-serial-in-serial-out systolic multiplier for Montgomery algorithm [J].
Lee, KJ ;
Kim, KW ;
Yoo, KY .
INFORMATION PROCESSING LETTERS, 2002, 82 (02) :65-71
[3]   Systolic multiplier for Montgomery's algorithm [J].
Lee, KJ ;
Yoo, KY .
INTEGRATION-THE VLSI JOURNAL, 2002, 32 (1-2) :99-109
[4]   An efficient signed digit montgomery multiplication for RSA [J].
Lim, Daesung ;
Chang, Nam Su ;
Ji, Sung Yeon ;
Kim, Chang Han ;
Lee, Sangjin ;
Park, Young-Ho .
JOURNAL OF SYSTEMS ARCHITECTURE, 2009, 55 (7-9) :355-362
[5]   A modified radix-2 Montgomery modular multiplication with new recoding method [J].
Manochehri, Kooroush ;
Sadeghian, Babak ;
Pourmozafari, Saadat .
IEICE ELECTRONICS EXPRESS, 2010, 7 (08) :513-519
[6]   Modified Montgomery modular multiplication and RSA exponentiation techniques [J].
McIvor, C ;
McLoone, M ;
McCanny, JV .
IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2004, 151 (06) :402-408
[7]  
MONTGOMERY PL, 1985, MATH COMPUT, V44, P519, DOI 10.1090/S0025-5718-1985-0777282-X
[8]  
ORUP H, 1995, PROCEEDINGS OF THE 12TH SYMPOSIUM ON COMPUTER ARITHMETIC, P193, DOI 10.1109/ARITH.1995.465359
[9]   Montgomery exponentiation needs no final subtractions [J].
Walter, CD .
ELECTRONICS LETTERS, 1999, 35 (21) :1831-1832