SEMI-FREDHOLM THEORY ON HILBERT C*-MODULES

被引:10
作者
Ivkovic, Stefan [1 ]
机构
[1] Serbian Acad Arts & Sci, Math Inst, Kneza Mihaila 36, Belgrade 11000, Serbia
来源
BANACH JOURNAL OF MATHEMATICAL ANALYSIS | 2019年 / 13卷 / 04期
关键词
Hilbert C*-module; semi-A-Fredholm operator; Calkin algebra; OPERATORS;
D O I
10.1215/17358787-2019-0022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the semi-Fredholm theory on Hilbert C*-modules as a continuation of Fredholm theory on Hilbert C*-modules established by Mishchenko and Fomenko. We give a definition of a semi-Fredholm operator on Hilbert C*-module, and we prove that these semi-Fredholm operators are those that are one-sided invertible modulo compact operators, that the set of proper semi-Fredholm operators is open, and many other results that generalize their classical counterparts.
引用
收藏
页码:989 / 1016
页数:28
相关论文
共 18 条
  • [1] Maps preserving semi-Fredholm operators on Hilbert C*-modules
    Aghasizadeh, T.
    Hejazian, S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) : 625 - 629
  • [2] Frank M, 2010, N Y J MATH, V16, P399
  • [3] On a class of functional equations
    Fredholm, I
    [J]. ACTA MATHEMATICA, 1903, 27 (01) : 365 - 390
  • [4] Gao FG., 2017, INT J MATH ANAL, V11, P389, DOI DOI 10.12988/IJMA.2017.7342.990
  • [5] Hejazian S, 2012, B MALAYS MATH SCI SO, V35, P627
  • [6] COMPACT AND "COMPACT" OPERATORS ON STANDARD HILBERT MODULES OVER C*-ALGEBRAS
    Lazovic, Zlatko
    [J]. ADVANCES IN OPERATOR THEORY, 2018, 3 (04): : 829 - 836
  • [7] Manuilov V. M., 2005, TRANSLATIONS MATH MO, V226
  • [8] Miscenko A. S., 1979, Uspekhi Mat. Nauk, V34, P67
  • [9] Miscenko A. S., 1979, IZV AKAD NAUK SSSR M, V43, P831
  • [10] Moore-Penrose inverses of Gram operators on Hilbert C*-modules
    Moslehian, M. S.
    Sharifi, K.
    Forough, M.
    Chakoshi, M.
    [J]. STUDIA MATHEMATICA, 2012, 210 (02) : 189 - 196