Investigation on microstructural patterns and hot crack in the molten pool via integrated finite-element and phase-field modeling

被引:14
作者
Wang, Lei [1 ,2 ]
Wang, Kehong [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Controlled Arc Intelligent Addit Mfg, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Microstructures; Phase field simulation; Hot crack; LASER-WELDING POOL; DENDRITE GROWTH; MORPHOLOGICAL EVOLUTION; CELLULAR-AUTOMATON; SOLIDIFICATION; SIMULATION; ALLOY; GRAIN; SUSCEPTIBILITY; ORIENTATION;
D O I
10.1016/j.jmapro.2019.11.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A multi-scale model combing phase-field model and finite-element model is applied to study microstructural patterns and susceptibility of hot crack in the molten pool. Firstly, the macroscopic temperature field during welding is calculated by finite-element model, and the geometry, thermal gradient G and solidification rate R are obtained. Then these macroscopic calculation results are employed as inputs to phase-field model. Finally, morphologies of microstructural patterns and susceptibility of hot crack at different locations in the molten pool are studied. Predicted and experimental morphologies of microstructural patterns are dendritic. Predicted primary dendrite arm spacing decreases from the bottom to the top surface in the molten pool, which agrees well with experimental measurements. The formation of hot crack is related to dendritic growth and micro-segregation between dendrites. Predicted susceptibility of hot crack decreases from the bottom to the top surface in the molten pool.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 38 条
[1]   Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations [J].
Asta, M ;
Hoyt, JJ ;
Karma, A .
PHYSICAL REVIEW B, 2002, 66 (10) :1001011-1001014
[2]   Phase-field simulation of solidification [J].
Boettinger, WJ ;
Warren, JA ;
Beckermann, C ;
Karma, A .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :163-194
[3]   Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting [J].
Chauvet, Edouard ;
Kontis, Paraskevas ;
Jaegle, Eric A. ;
Gault, Baptiste ;
Raabe, Dierk ;
Tassin, Catherine ;
Blandin, Jean-Jacques ;
Dendievel, Remy ;
Vayre, Benjamin ;
Abed, Stephane ;
Martin, Guilhem .
ACTA MATERIALIA, 2018, 142 :82-94
[4]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140
[5]   Welding: Solidification and microstructure [J].
David, SA ;
Babu, SS ;
Vitek, JM .
JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2003, 55 (06) :14-20
[6]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[7]   Current development in quantitative phase-field modeling of solidification [J].
Dong, Xiang-lei ;
Xing, Hui ;
Weng, Kang-rong ;
Zhao, Hong-liang .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2017, 24 (09) :865-878
[8]  
Echebarria B, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.061604
[9]   Onset of sidebranching in directional solidification [J].
Echebarria, Blas ;
Karma, Alain ;
Gurevich, Sebastian .
PHYSICAL REVIEW E, 2010, 81 (02)
[10]   Phase-field simulation of solidification morphology in laser powder deposition of Ti-Nb alloys [J].
Fallah, V. ;
Amoorezaei, M. ;
Provatas, N. ;
Corbin, S. F. ;
Khajepour, A. .
ACTA MATERIALIA, 2012, 60 (04) :1633-1646