Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests

被引:34
作者
Fagua, J. Camilo [1 ]
Jantz, Patrick [1 ]
Rodriguez-Buritica, Susana [2 ]
Duncanson, Laura [3 ]
Goetz, Scott J. [1 ]
机构
[1] No Arizona Univ, SICCS, Global Earth Observat & Dynam Ecosyst Lab GEODE, Flagstaff, AZ 85123 USA
[2] Alexander von Humboldt Inst Res Biol Resources, Spatial Ecol Grp, Biodivers Sci Program, Bogota 110311, Colombia
[3] Univ Maryland, Dept Geog Sci, College Pk, MD 21105 USA
基金
美国国家航空航天局;
关键词
ALOS-PALSAR (Phased Array type L-band Synthetic Aperture Radar); dry tropical forest; Landsat-8; learning algorithms; moist tropical forest; Sentinel-1; spatial modelling; LEAF-AREA INDEX; TANDEM-X INSAR; ABOVEGROUND BIOMASS; CARBON STOCKS; PHOTOSYNTHETIC SEASONALITY; VEGETATION INDEXES; EVAPOTRANSPIRATION; IMAGE; VARIABILITY; PERFORMANCE;
D O I
10.3390/rs11222697
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing accurate methods to map vegetation structure in tropical forests is essential to protect their biodiversity and improve their carbon stock estimation. We integrated LIDAR (Light Detection and Ranging), multispectral and SAR (Synthetic Aperture Radar) data to improve the prediction and mapping of canopy height (CH) at high spatial resolution (30 m) in tropical forests in South America. We modeled and mapped CH estimated from aircraft LiDAR surveys as a ground reference, using annual metrics derived from multispectral and SAR satellite imagery in a dry forest, a moist forest, and a rainforest of tropical South America. We examined the effect of the three forest types, five regression algorithms, and three predictor groups on the modelling and mapping of CH. Our CH models reached errors ranging from 1.2-3.4 m in the dry forest and 5.1-7.4 m in the rainforest and explained variances from 94-60% in the dry forest and 58-12% in the rainforest. Our best models show higher accuracies than previous works in tropical forests. The average accuracy of the five regression algorithms decreased from dry forests (2.6 m +/- 0.7) to moist (5.7 m +/- 0.4) and rainforests (6.6 m +/- 0.7). Random Forest regressions produced the most accurate models in the three forest types (1.2 m +/- 0.05 in the dry, 4.9 m +/- 0.14 in the moist, and 5.5 m +/- 0.3 the rainforest). Model performance varied considerably across the three predictor groups. Our results are useful for CH spatial prediction when GEDI (Global Ecosystem Dynamics Investigation lidar) data become available.
引用
收藏
页数:20
相关论文
共 104 条
[1]   Current issues in tropical phenology: a synthesis [J].
Abernethy, Katharine ;
Bush, Emma R. ;
Forget, Pierre-Michel ;
Mendoza, Irene ;
Morellato, Leonor Patricia C. .
BIOTROPICA, 2018, 50 (03) :477-482
[2]   Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature [J].
Alvarez-Davila, Esteban ;
Cayuela, Luis ;
Gonzalez-Caro, Sebastian ;
Aldana, Ana M. ;
Stevenson, Pablo R. ;
Phillips, Oliver ;
Cogollo, Alvaro ;
Penuela, Maria C. ;
von Hildebrand, Patricio ;
Jimenez, Eliana ;
Melo, Omar ;
Londono-Vega, Ana Catalina ;
Mendoza, Irina ;
Velasquez, Oswaldo ;
Fernandez, Fernando ;
Serna, Marcela ;
Velazquez-Rua, Cesar ;
Benitez, Doris ;
Rey-Benayas, Jose A. M. .
PLOS ONE, 2017, 12 (03)
[3]   Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources [J].
Anderson, Martha C. ;
Allen, Richard G. ;
Morse, Anthony ;
Kustas, William P. .
REMOTE SENSING OF ENVIRONMENT, 2012, 122 :50-65
[4]  
[Anonymous], 2018, REMOTE SENS BASEL, DOI DOI 10.3390/rs10030191
[5]   Biophysical and biochemical sources of variability in canopy reflectance [J].
Asner, GP .
REMOTE SENSING OF ENVIRONMENT, 1998, 64 (03) :234-253
[6]   High-resolution forest carbon stocks and emissions in the Amazon [J].
Asner, Gregory P. ;
Powell, George V. N. ;
Mascaro, Joseph ;
Knapp, David E. ;
Clark, John K. ;
Jacobson, James ;
Kennedy-Bowdoin, Ty ;
Balaji, Aravindh ;
Paez-Acosta, Guayana ;
Victoria, Eloy ;
Secada, Laura ;
Valqui, Michael ;
Hughes, R. Flint .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (38) :16738-16742
[7]  
Babak N., 2015, PACKAGE USDM UNCERTA
[8]   Radar vision in the mapping of forest biodiversity from space [J].
Bae, Soyeon ;
Levick, Shaun R. ;
Heidrich, Lea ;
Magdon, Paul ;
Leutner, Benjamin F. ;
Woellauer, Stephan ;
Serebryanyk, Alla ;
Nauss, Thomas ;
Krzystek, Peter ;
Gossner, Martin M. ;
Schall, Peter ;
Heibl, Christoph ;
Baessler, Claus ;
Doerfler, Inken ;
Schulze, Ernst-Detlef ;
Krah, Franz-Sebastian ;
Culmsee, Heike ;
Jung, Kirsten ;
Heurich, Marco ;
Fischer, Markus ;
Seibold, Sebastian ;
Thorn, Simon ;
Gerlach, Tobias ;
Hothorn, Torsten ;
Weisser, Wolfgang W. ;
Mueller, Joerg .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Downscaling Land Surface Temperature from MODIS Dataset with Random Forest Approach over Alpine Vegetated Areas [J].
Bartkowiak, Paulina ;
Castelli, Mariapina ;
Notarnicola, Claudia .
REMOTE SENSING, 2019, 11 (11)
[10]   Integrating satellite optical and thermal infrared observations for improving daily ecosystem functioning estimations during a drought episode [J].
Bayat, Bagher ;
van der Tol, Christiaan ;
Verhoef, Wouter .
REMOTE SENSING OF ENVIRONMENT, 2018, 209 :375-394