Do small worlds synchronize fastest?

被引:40
作者
Grabow, C. [1 ]
Hill, S. M. [2 ]
Grosskinsky, S. [2 ]
Timme, M. [1 ,3 ]
机构
[1] Max Planck Inst Dynam & Self Org, Network Dynam Grp, D-37073 Gottingen, Germany
[2] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England
[3] Bernstein Ctr Computat Neurosci BCCN Gottingen, D-37073 Gottingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
DYNAMICS;
D O I
10.1209/0295-5075/90/48002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Small-world networks interpolate between fully regular and fully random topologies and simultaneously exhibit large local clustering as well as short average path length. Small-world topology has therefore been suggested to support network synchronization. Here we study the asymptotic speed of synchronization of coupled oscillators in dependence on the degree of randomness of their interaction topology in generalized Watts-Strogatz ensembles. We find that networks with fixed in-degree synchronize faster the more random they are, with small worlds just appearing as an intermediate case. For any generic network ensemble, if synchronization speed is at all extremal at intermediate randomness, it is slowest in the small-world regime. This phenomenon occurs for various types of oscillators, intrinsic dynamics and coupling schemes. Copyright (c) EPLA, 2010
引用
收藏
页数:5
相关论文
共 29 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
[Anonymous], NEW J PHYS
[3]  
[Anonymous], SIAM J APPL MATH
[4]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[6]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[7]   Breaking synchrony by heterogeneity in complex networks [J].
Denker, M ;
Timme, M ;
Diesmann, M ;
Wolf, F ;
Geisel, T .
PHYSICAL REVIEW LETTERS, 2004, 92 (07)
[8]  
Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
[9]   Clustering in complex directed networks [J].
Fagiolo, Giorgio .
PHYSICAL REVIEW E, 2007, 76 (02)
[10]   Skeleton and fractal scaling in complex networks [J].
Goh, KI ;
Salvi, G ;
Kahng, B ;
Kim, D .
PHYSICAL REVIEW LETTERS, 2006, 96 (01)