Asymptotic normality for wavelet deconvolution density estimators

被引:14
|
作者
Liu, Youming [1 ]
Zeng, Xiaochen [1 ]
机构
[1] Beijing Univ Technol, Dept Appl Math, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Wavelet estimator; Central limit theorem; Deconvolution; Density function; CENTRAL-LIMIT-THEOREM; LP-NORMS; ERROR;
D O I
10.1016/j.acha.2018.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This current paper shows the asymptotic normality for wavelet deconvolution density estimators, when a density function belongs to some L-P(R) (p > 2) and the noises are moderately ill-posed with the index beta. The estimators include both the linear and non-linear wavelet ones. It turns out that the situation for 0 < beta <= 1 is more complicated than that for beta > 1. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:321 / 342
页数:22
相关论文
共 50 条