Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation

被引:77
|
作者
Xing, Rong [1 ]
Ho, W. S. Winston [1 ,2 ]
机构
[1] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Mixed matrix membrane; Polyethyleneglycol; Crosslinked polymer blend; CO2/CH4; separation; Zeolite; 5A; MIXED MATRIX MEMBRANES; GAS PERMEATION PROPERTIES; POLYMERIC MEMBRANES; POLYIMIDE MEMBRANES; POLY(ETHYLENE OXIDE); PERMEABILITY; PLASTICIZATION; LINKING; CO2; PERVAPORATION;
D O I
10.1016/j.jtice.2009.05.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Both zeolite 5A filled and unfilled, crosslinked polyvinylalcohol (PVA)/polyethyleneglycol (PEG) blend membranes were synthesized and characterized for CO2/CH4 separation. The polar ether segments of PEG interact favorably with CO2, thus resulting in a high solubility selectivity, while PVA provides a mechanically strong polymer matrix. The crosslinking time, molecular weight of PEG and PEG (MW 200) content were found to significantly affect the gas transport property of resulting membranes, including gas permeability and CO2/CH4 selectivity. At 64 wt.% PEG (MW 200), the membranes showed good CO2 permeability of 80.2 Barters (1 Barrer = 10(-10) cm(3) (STP) cm/cm(2) s cmHg) and CO2CH4 selectivity of 33 at 30 degrees C. Effects of the zeolite 5A loading, temperature and feed pressure were investigated for the gas separation performance of both zeolite-filied and unfilled PVA/PEG membranes. It was found that CO2/CH4 selectivity decreased as the zeolite 5A content increased, while CO2 permeability first decreased and then drastically increased. Increasing temperature enhanced CO2 permeability but sacrificed their selectivity for both zeolite-filled and unfilled PVA/PEG membranes. As temperature decreased, the unfilled PVA/PEG membranes could perform beyond the Robeson's upper bound. Compared to the unfilled PVA/PEG membrane, the zeolite-filled PVA/PEG membrane showed improved performance as feed pressure increased. (C) 2009 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:654 / 662
页数:9
相关论文
共 50 条
  • [21] High performance composite membranes comprising Zn(pyrz)2(SiF6) nanocrystals for CO2/CH4 separation
    Gong, Heqing
    Chuah, Chong Yang
    Yang, Yanqin
    Bae, Tae-Hyun
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 60 : 279 - 285
  • [22] Highly permeable and selective polymeric blend mixed matrix membranes for CO2/CH4 separation
    Marjan Farnam
    Hilmi bin Mukhtar
    Azmi bin Mohd Shariff
    Chemical Papers, 2021, 75 : 5663 - 5685
  • [23] Facilitated transport membranes for CO2/CH4 separation - State of the art
    Guo, Hongfang
    Wei, Jing
    Ma, Yulei
    Deng, Jing
    Yi, Shouliang
    Wang, Bangda
    Deng, Liyuan
    Jiang, Xia
    Dai, Zhongde
    ADVANCED MEMBRANES, 2022, 2
  • [24] Graphene-Based Membranes for CO2/CH4 Separation: Key Challenges and Perspectives
    Goh, Kunli
    Karahan, H. Enis
    Yang, Euntae
    Bae, Tae-Hyun
    APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [25] Polymer Electrolyte Membranes with Hybrid Cluster Network for Efficient CO2/CH4 Separation
    Guo, Zheyuan
    Qu, Zihan
    Wu, Hong
    Zhao, Rui
    Wu, Yingzhen
    Liu, Yutao
    Yang, Leixin
    Ren, Yanxiong
    Ye, Chumei
    Jiang, Zhongyi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (17): : 6815 - 6825
  • [26] Preparation and characterization of MWCNT-TEPA/polyurethane nanocomposite membranes for CO2/CH4 separation: Experimental and modeling
    Gheimasi, Keivan Mohammad
    Bakhtiari, Omid
    Ahmadi, Mojtaba
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 133 : 222 - 234
  • [27] Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes
    Rafiq, Sikander
    Man, Zakaria
    Maulud, Abdulhalim
    Muhammad, Nawshad
    Maitra, Saikat
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 90 : 162 - 172
  • [28] Viologen based star copolymer membranes: Preparation and application in CO2/CH4 separation
    Wei, Haixia
    Liu, Yuan
    Yuan, Ming
    Shao, Guangran
    Lan, Yang
    Zhang, Wangqing
    JOURNAL OF MEMBRANE SCIENCE, 2025, 722
  • [29] A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance
    Jiang, Yunzhe
    Liu, Chuanyao
    Caro, Juergen
    Huang, Aisheng
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 274 : 203 - 211
  • [30] Influence of synthesis parameters on preparation of AlPO-18 membranes by single DIPEA for CO2/CH4 separation
    Zhan, Tianqi
    Wu, Ting
    Shi, Yuyin
    Chen, Xinyu
    Li, Yuqin
    Zhu, Meihua
    Zhang, Fei
    Kumakiri, Izumi
    Chen, Xiangshu
    Kita, Hidetoshi
    JOURNAL OF MEMBRANE SCIENCE, 2020, 601